Hansen, Mark
Deep Learning-Based Image Recovery and Pose Estimation for Resident Space Objects
Aberdeen, Louis, Hansen, Mark, Smith, Melvyn L., Smith, Lyndon
As the density of spacecraft in Earth's orbit increases, their recognition, pose and trajectory identification becomes crucial for averting potential collisions and executing debris removal operations. However, training models able to identify a spacecraft and its pose presents a significant challenge due to a lack of available image data for model training. This paper puts forth an innovative framework for generating realistic synthetic datasets of Resident Space Object (RSO) imagery. Using the International Space Station (ISS) as a test case, it goes on to combine image regression with image restoration methodologies to estimate pose from blurred images. An analysis of the proposed image recovery and regression techniques was undertaken, providing insights into the performance, potential enhancements and limitations when applied to real imagery of RSOs. The image recovery approach investigated involves first applying image deconvolution using an effective point spread function, followed by detail object extraction with a U-Net. Interestingly, using only U-Net for image reconstruction the best pose performance was attained, reducing the average Mean Squared Error in image recovery by 97.28% and the average angular error by 71.9%. The successful application of U-Net image restoration combined with the Resnet50 regression network for pose estimation of the International Space Station demonstrates the value of a diverse set of evaluation tools for effective solutions to real-world problems such as the analysis of distant objects in Earth's orbit.
Excess Delay from GDP: Measurement and Causal Analysis
Liu, Ke, Hansen, Mark
Ground Delay Programs (GDPs) have been widely used to resolve excessive demand-capacity imbalances at arrival airports by shifting foreseen airborne delay to pre-departure ground delay. While offering clear safety and efficiency benefits, GDPs may also create additional delay because of imperfect execution and uncertainty in predicting arrival airport capacity. This paper presents a methodology for measuring excess delay resulting from individual GDPs and investigates factors that influence excess delay using regularized regression models. We measured excess delay for 1210 GDPs from 33 U.S. airports in 2019. On a per-restricted flight basis, the mean excess delay is 35.4 min with std of 20.6 min. In our regression analysis of the variation in excess delay, ridge regression is found to perform best. The factors affecting excess delay include time variations during gate out and taxi out for flights subject to the GDP, program rate setting and revisions, and GDP time duration.
Real-Time Go-Around Prediction: A case study of JFK airport
Liu, Ke, Ding, Kaijing, Dai, Lu, Hansen, Mark, Chan, Kennis, Schade, John
In this paper, we employ the long-short-term memory model (LSTM) to predict the real-time go-around probability as an arrival flight is approaching JFK airport and within 10 nm of the landing runway threshold. We further develop methods to examine the causes to go-around occurrences both from a global view and an individual flight perspective. According to our results, in-trail spacing, and simultaneous runway operation appear to be the top factors that contribute to overall go-around occurrences. We then integrate these pre-trained models and analyses with real-time data streaming, and finally develop a demo web-based user interface that integrates the different components designed previously into a real-time tool that can eventually be used by flight crews and other line personnel to identify situations in which there is a high risk of a go-around.
Universal Bovine Identification via Depth Data and Deep Metric Learning
Sharma, Asheesh, Randewich, Lucy, Andrew, William, Hannuna, Sion, Campbell, Neill, Mullan, Siobhan, Dowsey, Andrew W., Smith, Melvyn, Hansen, Mark, Burghardt, Tilo
This paper proposes and evaluates, for the first time, a top-down (dorsal view), depth-only deep learning system for accurately identifying individual cattle and provides associated code, datasets, and training weights for immediate reproducibility. An increase in herd size skews the cow-to-human ratio at the farm and makes the manual monitoring of individuals more challenging. Therefore, real-time cattle identification is essential for the farms and a crucial step towards precision livestock farming. Underpinned by our previous work, this paper introduces a deep-metric learning method for cattle identification using depth data from an off-the-shelf 3D camera. The method relies on CNN and MLP backbones that learn well-generalised embedding spaces from the body shape to differentiate individuals -- requiring neither species-specific coat patterns nor close-up muzzle prints for operation. The network embeddings are clustered using a simple algorithm such as $k$-NN for highly accurate identification, thus eliminating the need to retrain the network for enrolling new individuals. We evaluate two backbone architectures, ResNet, as previously used to identify Holstein Friesians using RGB images, and PointNet, which is specialised to operate on 3D point clouds. We also present CowDepth2023, a new dataset containing 21,490 synchronised colour-depth image pairs of 99 cows, to evaluate the backbones. Both ResNet and PointNet architectures, which consume depth maps and point clouds, respectively, led to high accuracy that is on par with the coat pattern-based backbone.
Evaluating eVTOL Network Performance and Fleet Dynamics through Simulation-Based Analysis
Onat, Emin Burak, Bulusu, Vishwanath, Chakrabarty, Anjan, Hansen, Mark, Sengupta, Raja, Sridar, Banavar
Urban Air Mobility (UAM) represents a promising solution for future transportation. In this study, we introduce VertiSim, an advanced event-driven simulator developed to evaluate e-VTOL transportation networks. Uniquely, VertiSim simultaneously models passenger, aircraft, and energy flows, reflecting the interrelated complexities of UAM systems. We utilized VertiSim to assess 19 operational scenarios serving a daily demand for 2,834 passengers with varying fleet sizes and vertiport distances. The study aims to support stakeholders in making informed decisions about fleet size, network design, and infrastructure development by understanding tradeoffs in passenger delay time, operational costs, and fleet utilization. Our simulations, guided by a heuristic dispatch and charge policy, indicate that fleet size significantly influences passenger delay and energy consumption within UAM networks. We find that increasing the fleet size can reduce average passenger delays, but this comes at the cost of higher operational expenses due to an increase in the number of repositioning flights. Additionally, our analysis highlights how vertiport distances impact fleet utilization: longer distances result in reduced total idle time and increased cruise and charge times, leading to more efficient fleet utilization but also longer passenger delays. These findings are important for UAM network planning, especially in balancing fleet size with vertiport capacity and operational costs. Simulator demo is available at: https://tinyurl.com/vertisim-vis
ReelFramer: Human-AI Co-Creation for News-to-Video Translation
Wang, Sitong, Menon, Samia, Long, Tao, Henderson, Keren, Li, Dingzeyu, Crowston, Kevin, Hansen, Mark, Nickerson, Jeffrey V., Chilton, Lydia B.
Short videos on social media are the dominant way young people consume content. News outlets would like to reach audiences through news reels - short videos that convey news - but struggle to translate traditional journalistic formats into short, colloquial videos. Generative AI has the potential to transform content but often fails to be correct and coherent by itself. To help journalists create scripts and storyboards for news reels, we introduce a human-AI co-creative system called ReelFramer. It uses an intermediate step of framing and foundation to guide AI toward better outputs. We introduce three narrative framings to balance information and entertainment in news reels. The foundation for the script is a premise, and the foundation for the storyboard is a character board. Our studies show that the premise helps generate more relevant and coherent scripts and that co-creating with AI lowers journalists' barriers to making their first news reels.
Achieving Goals using Reward Shaping and Curriculum Learning
Anca, Mihai, Thomas, Jonathan D., Pedamonti, Dabal, Studley, Matthew, Hansen, Mark
Real-time control for robotics is a popular research area in the reinforcement learning community. Through the use of techniques such as reward shaping, researchers have managed to train online agents across a multitude of domains. Despite these advances, solving goal-oriented tasks still requires complex architectural changes or hard constraints to be placed on the problem. In this article, we solve the problem of stacking multiple cubes by combining curriculum learning, reward shaping, and a high number of efficiently parallelized environments. We introduce two curriculum learning settings that allow us to separate the complex task into sequential sub-goals, hence enabling the learning of a problem that may otherwise be too difficult. We focus on discussing the challenges encountered while implementing them in a goal-conditioned environment. Finally, we extend the best configuration identified on a higher complexity environment with differently shaped objects.
Connecting Surrogate Safety Measures to Crash Probablity via Causal Probabilistic Time Series Prediction
Lu, Jiajian, Grembek, Offer, Hansen, Mark
Surrogate safety measures can provide fast and pro-active safety analysis and give insights on the pre-crash process and crash failure mechanism by studying near misses. However, validating surrogate safety measures by connecting them to crashes is still an open question. This paper proposed a method to connect surrogate safety measures to crash probability using probabilistic time series prediction. The method used sequences of speed, acceleration and time-to-collision to estimate the probability density functions of those variables with transformer masked autoregressive flow (transformer-MAF). The autoregressive structure mimicked the causal relationship between condition, action and crash outcome and the probability density functions are used to calculate the conditional action probability, crash probability and conditional crash probability. The predicted sequence is accurate and the estimated probability is reasonable under both traffic conflict context and normal interaction context and the conditional crash probability shows the effectiveness of evasive action to avoid crashes in a counterfactual experiment.
Predicting Aircraft Trajectories: A Deep Generative Convolutional Recurrent Neural Networks Approach
Liu, Yulin, Hansen, Mark
Reliable 4D aircraft trajectory prediction, whether in a real-time setting or for analysis of counterfactuals, is important to the efficiency of the aviation system. Toward this end, we first propose a highly generalizable efficient tree-based matching algorithm to construct image-like feature maps from high-fidelity meteorological datasets - wind, temperature and convective weather. We then model the track points on trajectories as conditional Gaussian mixtures with parameters to be learned from our proposed deep generative model, which is an end-to-end convolutional recurrent neural network that consists of a long short-term memory (LSTM) encoder network and a mixture density LSTM decoder network. The encoder network embeds last-filed flight plan information into fixed-size hidden state variables and feeds the decoder network, which further learns the spatiotemporal correlations from the historical flight tracks and outputs the parameters of Gaussian mixtures. Convolutional layers are integrated into the pipeline to learn representations from the high-dimension weather features. During the inference process, beam search, adaptive Kalman filter, and Rauch-Tung-Striebel smoother algorithms are used to prune the variance of generated trajectories.