Goto

Collaborating Authors

 Han, Xingshuo


An LLM-Empowered Adaptive Evolutionary Algorithm For Multi-Component Deep Learning Systems

arXiv.org Artificial Intelligence

Multi-objective evolutionary algorithms (MOEAs) are widely used for searching optimal solutions in complex multi-component applications. Traditional MOEAs for multi-component deep learning (MCDL) systems face challenges in enhancing the search efficiency while maintaining the diversity. To combat these, this paper proposes $\mu$MOEA, the first LLM-empowered adaptive evolutionary search algorithm to detect safety violations in MCDL systems. Inspired by the context-understanding ability of Large Language Models (LLMs), $\mu$MOEA promotes the LLM to comprehend the optimization problem and generate an initial population tailed to evolutionary objectives. Subsequently, it employs adaptive selection and variation to iteratively produce offspring, balancing the evolutionary efficiency and diversity. During the evolutionary process, to navigate away from the local optima, $\mu$MOEA integrates the evolutionary experience back into the LLM. This utilization harnesses the LLM's quantitative reasoning prowess to generate differential seeds, breaking away from current optimal solutions. We evaluate $\mu$MOEA in finding safety violations of MCDL systems, and compare its performance with state-of-the-art MOEA methods. Experimental results show that $\mu$MOEA can significantly improve the efficiency and diversity of the evolutionary search.


BadSFL: Backdoor Attack against Scaffold Federated Learning

arXiv.org Artificial Intelligence

Federated learning (FL) enables the training of deep learning models on distributed clients to preserve data privacy. However, this learning paradigm is vulnerable to backdoor attacks, where malicious clients can upload poisoned local models to embed backdoors into the global model, leading to attacker-desired predictions. Existing backdoor attacks mainly focus on FL with independently and identically distributed (IID) scenarios, while real-world FL training data are typically non-IID. Current strategies for non-IID backdoor attacks suffer from limitations in maintaining effectiveness and durability. To address these challenges, we propose a novel backdoor attack method, BadSFL, specifically designed for the FL framework using the scaffold aggregation algorithm in non-IID settings. BadSFL leverages a Generative Adversarial Network (GAN) based on the global model to complement the training set, achieving high accuracy on both backdoor and benign samples. It utilizes a specific feature as the backdoor trigger to ensure stealthiness, and exploits the Scaffold's control variate to predict the global model's convergence direction, ensuring the backdoor's persistence. Extensive experiments on three benchmark datasets demonstrate the high effectiveness, stealthiness, and durability of BadSFL. Notably, our attack remains effective over 60 rounds in the global model and up to 3 times longer than existing baseline attacks after stopping the injection of malicious updates.