Han, Tyler
Demonstrating Wheeled Lab: Modern Sim2Real for Low-cost, Open-source Wheeled Robotics
Han, Tyler, Shah, Preet, Rajagopal, Sidharth, Bao, Yanda, Jung, Sanghun, Talia, Sidharth, Guo, Gabriel, Xu, Bryan, Mehta, Bhaumik, Romig, Emma, Scalise, Rosario, Boots, Byron
Simulation has been pivotal in recent robotics milestones and is poised to play a prominent role in the field's future. However, recent robotic advances often rely on expensive and high-maintenance platforms, limiting access to broader robotics audiences. This work introduces Wheeled Lab, a framework for the low-cost, open-source wheeled platforms that are already widely established in education and research. Through integration with Isaac Lab, Wheeled Lab introduces modern techniques in Sim2Real, such as domain randomization, sensor simulation, and end-to-end learning, to new user communities. To kickstart education and demonstrate the framework's capabilities, we develop three state-of-the-art policies for small-scale RC cars: controlled drifting, elevation traversal, and visual navigation, each trained in simulation and deployed in the real world. By bridging the gap between advanced Sim2Real methods and affordable, available robotics, Wheeled Lab aims to democratize access to cutting-edge tools, fostering innovation and education in a broader robotics context. The full stack, from hardware to software, is low cost and open-source.
Transferable Reinforcement Learning via Generalized Occupancy Models
Zhu, Chuning, Wang, Xinqi, Han, Tyler, Du, Simon S., Gupta, Abhishek
Intelligent agents must be generalists, capable of quickly adapting to various tasks. In reinforcement learning (RL), model-based RL learns a dynamics model of the world, in principle enabling transfer to arbitrary reward functions through planning. However, autoregressive model rollouts suffer from compounding error, making model-based RL ineffective for long-horizon problems. Successor features offer an alternative by modeling a policy's long-term state occupancy, reducing policy evaluation under new tasks to linear reward regression. Yet, policy improvement with successor features can be challenging. This work proposes a novel class of models, i.e., generalized occupancy models (GOMs), that learn a distribution of successor features from a stationary dataset, along with a policy that acts to realize different successor features. These models can quickly select the optimal action for arbitrary new tasks. By directly modeling long-term outcomes in the dataset, GOMs avoid compounding error while enabling rapid transfer across reward functions. We present a practical instantiation of GOMs using diffusion models and show their efficacy as a new class of transferable models, both theoretically and empirically across various simulated robotics problems.
Dynamics Models in the Aggressive Off-Road Driving Regime
Han, Tyler, Talia, Sidharth, Panicker, Rohan, Shah, Preet, Jawale, Neel, Boots, Byron
Current developments in autonomous off-road driving are steadily increasing performance through higher speeds and more challenging, unstructured environments. However, this operating regime subjects the vehicle to larger inertial effects, where consideration of higher-order states is necessary to avoid failures such as rollovers or excessive impact forces. Aggressive driving through Model Predictive Control (MPC) in these conditions requires dynamics models that accurately predict safety-critical information. This work aims to empirically quantify this aggressive operating regime and its effects on the performance of current models. We evaluate three dynamics models of varying complexity on two distinct off-road driving datasets: one simulated and the other real-world. By conditioning trajectory data on higher-order states, we show that model accuracy degrades with aggressiveness and simpler models degrade faster. These models are also validated across datasets, where accuracies over safety-critical states are reported and provide benchmarks for future work.
Deep Learning for Koopman-based Dynamic Movement Primitives
Han, Tyler, Henshaw, Carl Glen
The challenge of teaching robots to perform dexterous manipulation, dynamic locomotion, or whole--body manipulation from a small number of demonstrations is an important research field that has attracted interest from across the robotics community. In this work, we propose a novel approach by joining the theories of Koopman Operators and Dynamic Movement Primitives to Learning from Demonstration. Our approach, named \gls{admd}, projects nonlinear dynamical systems into linear latent spaces such that a solution reproduces the desired complex motion. Use of an autoencoder in our approach enables generalizability and scalability, while the constraint to a linear system attains interpretability. Our results are comparable to the Extended Dynamic Mode Decomposition on the LASA Handwriting dataset but with training on only a small fractions of the letters.
Model Predictive Control for Aggressive Driving Over Uneven Terrain
Han, Tyler, Liu, Alex, Li, Anqi, Spitzer, Alex, Shi, Guanya, Boots, Byron
Terrain traversability in off-road autonomy has traditionally relied on semantic classification or resource-intensive dynamics models to capture vehicle-terrain interactions. However, our experiences in the development of a high-speed off-road platform have revealed several critical challenges that are not adequately addressed by current methods at our operating speeds of 7--10 m/s. This study focuses particularly on uneven terrain geometries such as hills, banks, and ditches. These common high-risk geometries are capable of disabling the vehicle and causing severe passenger injuries if poorly traversed. We introduce a physics-based framework for identifying traversability constraints on terrain dynamics. Using this framework, we then derive two fundamental constraints, with a primary focus on mitigating rollover and ditch-crossing failures. In addition, we present the design of our planning and control system, which uses Model Predictive Control (MPC) and a low-level controller to enable the fast and efficient computation of these constraints to meet the demands of our aggressive driving. Through real-world experimentation and traversal of hills and ditches, our approach is tested and benchmarked against a human expert. These results demonstrate that our approach captures fundamental elements of safe and aggressive control on these terrain features.