Han, Dongming
Integrating Stock Features and Global Information via Large Language Models for Enhanced Stock Return Prediction
Ding, Yujie, Jia, Shuai, Ma, Tianyi, Mao, Bingcheng, Zhou, Xiuze, Li, Liuliu, Han, Dongming
The remarkable achievements and rapid advancements of Large Language Models (LLMs) such as ChatGPT and GPT-4 have showcased their immense potential in quantitative investment. Traders can effectively leverage these LLMs to analyze financial news and predict stock returns accurately. However, integrating LLMs into existing quantitative models presents two primary challenges: the insufficient utilization of semantic information embedded within LLMs and the difficulties in aligning the latent information within LLMs with pre-existing quantitative stock features. We propose a novel framework consisting of two components to surmount these challenges. The first component, the Local-Global (LG) model, introduces three distinct strategies for modeling global information. These approaches are grounded respectively on stock features, the capabilities of LLMs, and a hybrid method combining the two paradigms. The second component, Self-Correlated Reinforcement Learning (SCRL), focuses on aligning the embeddings of financial news generated by LLMs with stock features within the same semantic space. By implementing our framework, we have demonstrated superior performance in Rank Information Coefficient and returns, particularly compared to models relying only on stock features in the China A-share market.
Towards an Understanding and Explanation for Mixed-Initiative Artificial Scientific Text Detection
Weng, Luoxuan, Zhu, Minfeng, Wong, Kam Kwai, Liu, Shi, Sun, Jiashun, Zhu, Hang, Han, Dongming, Chen, Wei
Large language models (LLMs) have gained popularity in various fields for their exceptional capability of generating human-like text. Their potential misuse has raised social concerns about plagiarism in academic contexts. However, effective artificial scientific text detection is a non-trivial task due to several challenges, including 1) the lack of a clear understanding of the differences between machine-generated and human-written scientific text, 2) the poor generalization performance of existing methods caused by out-of-distribution issues, and 3) the limited support for human-machine collaboration with sufficient interpretability during the detection process. In this paper, we first identify the critical distinctions between machine-generated and human-written scientific text through a quantitative experiment. Then, we propose a mixed-initiative workflow that combines human experts' prior knowledge with machine intelligence, along with a visual analytics prototype to facilitate efficient and trustworthy scientific text detection. Finally, we demonstrate the effectiveness of our approach through two case studies and a controlled user study with proficient researchers. We also provide design implications for interactive artificial text detection tools in high-stakes decision-making scenarios.