Han, Donghoon
CacheFocus: Dynamic Cache Re-Positioning for Efficient Retrieval-Augmented Generation
Lee, Kun-Hui, Park, Eunhwan, Han, Donghoon, Na, Seung-Hoon
Large Language Models (LLMs) excel across a variety of language tasks yet are constrained by limited input lengths and high computational costs. Existing approaches\textemdash such as relative positional encodings (e.g., RoPE, ALiBi) and sliding window mechanisms\textemdash partially alleviate these issues but often require additional training or suffer from performance degradation with longer inputs. In this paper, we introduce \textbf{\textit{CacheFocus}}, a method that enhances length normalization and reduces inference latency without any further training. Our approach leverages query-independent, offline caching to efficiently reuse a Context KV Cache Store. We address the amplification of abnormal token distributions problem by re-positioning cached keys and introducing Layer-Adaptive Cache Pruning to discard low-relevance caches during pre-filling. Additionally, our Adaptive Positional Allocation Strategy dynamically reassigns cache positions to maximize the use of the available positional encoding range. Experiments on the Natural Questions and TriviaQA datasets demonstrate that CacheFocus outperforms alternative methods even when inputs exceed the $4$K limit of the \texttt{LLaMA-2} model, emphasizing its practical effectiveness for long-context LLMs. Moreover, even with large maximum input length of \texttt{Qwen2}, the performance of CacheFocus shows that it maintains consistent performance even as the number of documents increases, effectively managing long-text generation without degradation.
MERLIN: Multimodal Embedding Refinement via LLM-based Iterative Navigation for Text-Video Retrieval-Rerank Pipeline
Han, Donghoon, Park, Eunhwan, Lee, Gisang, Lee, Adam, Kwak, Nojun
The rapid expansion of multimedia content has made accurately retrieving relevant videos from large collections increasingly challenging. Recent advancements in text-video retrieval have focused on cross-modal interactions, large-scale foundation model training, and probabilistic modeling, yet often neglect the crucial user perspective, leading to discrepancies between user queries and the content retrieved. To address this, we introduce MERLIN (Multimodal Embedding Refinement via LLM-based Iterative Navigation), a novel, training-free pipeline that leverages Large Language Models (LLMs) for iterative feedback learning. MERLIN refines query embeddings from a user perspective, enhancing alignment between queries and video content through a dynamic question answering process. Experimental results on datasets like MSR-VTT, MSVD, and ActivityNet demonstrate that MERLIN substantially improves Recall@1, outperforming existing systems and confirming the benefits of integrating LLMs into multimodal retrieval systems for more responsive and context-aware multimedia retrieval.
Unleash the Potential of CLIP for Video Highlight Detection
Han, Donghoon, Seo, Seunghyeon, Park, Eunhwan, Nam, Seong-Uk, Kwak, Nojun
Multimodal and large language models (LLMs) have revolutionized the utilization of open-world knowledge, unlocking novel potentials across various tasks and applications. Among these domains, the video domain has notably benefited from their capabilities. In this paper, we present Highlight-CLIP (HL-CLIP), a method designed to excel in the video highlight detection task by leveraging the pre-trained knowledge embedded in multimodal models. By simply fine-tuning the multimodal encoder in combination with our innovative saliency pooling technique, we have achieved the state-of-the-art performance in the highlight detection task, the QVHighlight Benchmark, to the best of our knowledge.
ConcatPlexer: Additional Dim1 Batching for Faster ViTs
Han, Donghoon, Seo, Seunghyeon, Jeon, Donghyeon, Jang, Jiho, Kong, Chaerin, Kwak, Nojun
Transformers have demonstrated tremendous success not only in the natural language processing (NLP) domain but also the field of computer vision, igniting various creative approaches and applications. Yet, the superior performance and modeling flexibility of transformers came with a severe increase in computation costs, and hence several works have proposed methods to reduce this burden. Inspired by a cost-cutting method originally proposed for language models, Data Multiplexing (DataMUX), we propose a novel approach for efficient visual recognition that employs additional dim1 batching (i.e., concatenation) that greatly improves the throughput with little compromise in the accuracy. We first introduce a naive adaptation of DataMux for vision models, Image Multiplexer, and devise novel components to overcome its weaknesses, rendering our final model, ConcatPlexer, at the sweet spot between inference speed and accuracy. The ConcatPlexer was trained on ImageNet1K and CIFAR100 dataset and it achieved 23.5% less GFLOPs than ViT-B/16 with 69.5% and 83.4% validation accuracy, respectively.