Hamilton, William
End-to-End Training of Multi-Document Reader and Retriever for Open-Domain Question Answering
Sachan, Devendra Singh, Reddy, Siva, Hamilton, William, Dyer, Chris, Yogatama, Dani
We present an end-to-end differentiable training method for retrieval-augmented open-domain question answering systems that combine information from multiple retrieved documents when generating answers. We model retrieval decisions as latent variables over sets of relevant documents. Since marginalizing over sets of retrieved documents is computationally hard, we approximate this using an expectation-maximization algorithm. We iteratively estimate the value of our latent variable (the set of relevant documents for a given question) and then use this estimate to update the retriever and reader parameters. We hypothesize that such end-to-end training allows training signals to flow to the reader and then to the retriever better than staged-wise training. This results in a retriever that is able to select more relevant documents for a question and a reader that is trained on more accurate documents to generate an answer. Experiments on three benchmark datasets demonstrate that our proposed method outperforms all existing approaches of comparable size by 2-3% absolute exact match points, achieving new state-of-the-art results. Our results also demonstrate the feasibility of learning to retrieve to improve answer generation without explicit supervision of retrieval decisions.
A Review of Biomedical Datasets Relating to Drug Discovery: A Knowledge Graph Perspective
Bonner, Stephen, Barrett, Ian P, Ye, Cheng, Swiers, Rowan, Engkvist, Ola, Hamilton, William
Drug discovery and development is an extremely complex process, with high attrition contributing to the costs of delivering new medicines to patients. Recently, various machine learning approaches have been proposed and investigated to help improve the effectiveness and speed of multiple stages of the drug discovery pipeline. Among these techniques, it is especially those using Knowledge Graphs that are proving to have considerable promise across a range of tasks, including drug repurposing, drug toxicity prediction and target gene-disease prioritisation. In such a knowledge graph-based representation of drug discovery domains, crucial elements including genes, diseases and drugs are represented as entities or vertices, whilst relationships or edges between them indicate some level of interaction. For example, an edge between a disease and drug entity might represent a successful clinical trial, or an edge between two drug entities could indicate a potentially harmful interaction. In order to construct high-quality and ultimately informative knowledge graphs however, suitable data and information is of course required. In this review, we detail publicly available primary data sources containing information suitable for use in constructing various drug discovery focused knowledge graphs. We aim to help guide machine learning and knowledge graph practitioners who are interested in applying new techniques to the drug discovery field, but who may be unfamiliar with the relevant data sources. Overall we hope this review will help motivate more machine learning researchers to explore combining knowledge graphs and machine learning to help solve key and emerging questions in the drug discovery domain.