Goto

Collaborating Authors

 Hamidi, Mehrab


Interpretability in Action: Exploratory Analysis of VPT, a Minecraft Agent

arXiv.org Artificial Intelligence

Understanding the mechanisms behind decisions taken by large foundation models in sequential decision making tasks is critical to ensuring that such systems operate transparently and safely. In this work, we perform exploratory analysis on the Video PreTraining (VPT) Minecraft playing agent, one of the largest open-source vision-based agents. We aim to illuminate its reasoning mechanisms by applying various interpretability techniques. First, we analyze the attention mechanism while the agent solves its training task - crafting a diamond pickaxe. The agent pays attention to the last four frames and several key-frames further back in its six-second memory. This is a possible mechanism for maintaining coherence in a task that takes 3-10 minutes, despite the short memory span. Secondly, we perform various interventions, which help us uncover a worrying case of goal misgeneralization: VPT mistakenly identifies a villager wearing brown clothes as a tree trunk when the villager is positioned stationary under green tree leaves, and punches it to death.


Reverse Engineering Deep ReLU Networks An Optimization-based Algorithm

arXiv.org Artificial Intelligence

Reverse engineering deep ReLU networks is a critical problem in understanding the complex behavior and interpretability of neural networks. In this research, we present a novel method for reconstructing deep ReLU networks by leveraging convex optimization techniques and a sampling-based approach. Our method begins by sampling points in the input space and querying the black box model to obtain the corresponding hyperplanes. We then define a convex optimization problem with carefully chosen constraints and conditions to guarantee its convexity. The objective function is designed to minimize the discrepancy between the reconstructed network's output and the target model's output, subject to the constraints. We employ gradient descent to optimize the objective function, incorporating L1 or L2 regularization as needed to encourage sparse or smooth solutions. Our research contributes to the growing body of work on reverse engineering deep ReLU networks and paves the way for new advancements in neural network interpretability and security.