Hamdi, Ibraheem
Breaking Down the Hierarchy: A New Approach to Leukemia Classification
Hamdi, Ibraheem, El-Gendy, Hosam, Sharshar, Ahmed, Saeed, Mohamed, Ridzuan, Muhammad, Hashmi, Shahrukh K., Syed, Naveed, Mirza, Imran, Hussain, Shakir, Abdalla, Amira Mahmoud, Yaqub, Mohammad
The complexities inherent to leukemia, multifaceted cancer affecting white blood cells, pose considerable diagnostic and treatment challenges, primarily due to reliance on laborious morphological analyses and expert judgment that are susceptible to errors. Addressing these challenges, this study presents a refined, comprehensive strategy leveraging advanced deep-learning techniques for the classification of leukemia subtypes. We commence by developing a hierarchical label taxonomy, paving the way for differentiating between various subtypes of leukemia. The research further introduces a novel hierarchical approach inspired by clinical procedures capable of accurately classifying diverse types of leukemia alongside reactive and healthy cells. An integral part of this study involves a meticulous examination of the performance of Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) as classifiers. The proposed method exhibits an impressive success rate, achieving approximately 90\% accuracy across all leukemia subtypes, as substantiated by our experimental results. A visual representation of the experimental findings is provided to enhance the model's explainability and aid in understanding the classification process.
Automatic Quality Assessment of First Trimester Crown-Rump-Length Ultrasound Images
Cengiz, Sevim, Hamdi, Ibraheem, Yaqub, Mohammad
Fetal gestational age (GA) is vital clinical information that is estimated during pregnancy in order to assess fetal growth. This is usually performed by measuring the crown-rump-length (CRL) on an ultrasound image in the Dating scan which is then correlated with fetal age and growth trajectory. A major issue when performing the CRL measurement is ensuring that the image is acquired at the correct view, otherwise it could be misleading. Although clinical guidelines specify the criteria for the correct CRL view, sonographers may not regularly adhere to such rules. In this paper, we propose a new deep learning-based solution that is able to verify the adherence of a CRL image to clinical guidelines in order to assess image quality and facilitate accurate estimation of GA. We first segment out important fetal structures then use the localized structures to perform a clinically-guided mapping that verifies the adherence of criteria. The segmentation method combines the benefits of Convolutional Neural Network (CNN) and the Vision Transformer (ViT) to segment fetal structures in ultrasound images and localize important fetal landmarks. For segmentation purposes, we compare our proposed work with UNet and show that our CNN/ViT-based method outperforms an optimized version of UNet. Furthermore, we compare the output of the mapping with classification CNNs when assessing the clinical criteria and the overall acceptability of CRL images. We show that the proposed mapping is not only explainable but also more accurate than the best performing classification CNNs.