Goto

Collaborating Authors

 Hamdan, Shadi


How much do LLMs learn from negative examples?

arXiv.org Artificial Intelligence

Large language models (LLMs) undergo a three-phase training process: unsupervised pre-training, supervised fine-tuning (SFT), and learning from human feedback (RLHF/DPO). Notably, it is during the final phase that these models are exposed to negative examples -- incorrect, rejected, or suboptimal responses to queries. This paper delves into the role of negative examples in the training of LLMs, using a likelihood-ratio (Likra) model on multiple-choice question answering benchmarks to precisely manage the influence and the volume of negative examples. Our findings reveal three key insights: (1) During a critical phase in training, Likra with negative examples demonstrates a significantly larger improvement per training example compared to SFT using only positive examples. This leads to a sharp jump in the learning curve for Likra unlike the smooth and gradual improvement of SFT; (2) negative examples that are plausible but incorrect (near-misses) exert a greater influence; and (3) while training with positive examples fails to significantly decrease the likelihood of plausible but incorrect answers, training with negative examples more accurately identifies them. These results indicate a potentially significant role for negative examples in improving accuracy and reducing hallucinations for LLMs.


Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

arXiv.org Artificial Intelligence

Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.