Hamadi, Youssef
Preference Reasoning in Matching Procedures: Application to the Admission Post-Baccalaureat Platform
Hamadi, Youssef, Kaci, Souhila
Because preferences naturally arise and play an important role in many real-life decisions, they are at the backbone of various fields. In particular preferences are increasingly used in almost all matching procedures-based applications. In this work we highlight the benefit of using AI insights on preferences in a large scale application, namely the French Admission Post-Baccalaureat Platform (APB). Each year APB allocates hundreds of thousands first year applicants to universities. This is done automatically by matching applicants preferences to university seats. In practice, APB can be unable to distinguish between applicants which leads to the introduction of random selection. This has created frustration in the French public since randomness, even used as a last mean does not fare well with the republican egalitarian principle. In this work, we provide a solution to this problem. We take advantage of recent AI Preferences Theory results to show how to enhance APB in order to improve expressiveness of applicants preferences and reduce their exposure to random decisions.
Stochastic Local Search for Satisfiability Modulo Theories
Fröhlich, Andreas (Johannes Kepler University) | Biere, Armin (Johannes Kepler University) | Wintersteiger, Christoph M. (Microsoft ) | Hamadi, Youssef (Microsoft)
Satisfiability Modulo Theories (SMT) is essential for many practical applications, e.g., in hard- and software verification, and increasingly also in other scientific areas like computational biology. A large number of applications in these areas benefit from bit-precise reasoning over finite-domain variables. Current approaches in this area translate a formula over bit-vectors to an equisatisfiable propositional formula, which is then given to a SAT solver. In this paper, we present a novel stochastic local search (SLS) algorithm to solve SMT problems, especially those in the theory of bit-vectors, directly on the theory level. We explain how several successful techniques used in modern SLS solvers for SAT can be lifted to the SMT level. Experimental results show that our approach can compete with state-of-the-art bit-vector solvers on many practical instances and, sometimes, outperform existing solvers. This offers interesting possibilities in combining our approach with existing techniques, and, moreover, new insights into the importance of exploiting problem structure in SLS solvers for SAT. Our approach is modular and, therefore, extensible to support other theories, potentially allowing SLS to become part of the more general SMT framework.
Bandit-Based Search for Constraint Programming
Loth, Manuel (MSR–INRIA Joint Centre) | Sebag, Michèle (Université Paris-Sud) | Hamadi, Youssef (Microsoft Research, Cambridge) | Schulte, Christian (KTH Royal Institute of Technology) | Schoenauer, Marc
Constraint Programming (CP) solvers classically explore the solution space using tree-search based heuristics. Monte-Carlo Tree-Search (MCTS) is a tree-search method aimed at optimal sequential decision making under uncertainty. At the crossroads of CP and MCTS, this paper presents the Bandit Search for Constraint Programming (BASCOP) algorithm, adapting MCTS to the specifics of CP search trees. Formally, MCTS simultaneously estimates the average node reward, and uses it to bias the exploration towards the most promising regions of the tree, borrowing the multi-armed bandit (MAB) decision rule. The two contributions in BASCOP concern i) a specific reward function, estimating the relative failure depth conditionally to a (variable, value) assignment; ii) a new decision rule, hybridizing the MAB framework and the spirit of local neighborhood search. Specifically, BASCOP guides the CP search in the neighborhood of the previous best solution, by exploiting statistical estimates gathered across multiple restarts. BASCOP, using Gecode as the underlying constraint solver, shows significant improvements over the depth-first search baseline on some CP benchmark suites. For hard job-shop scheduling problems, BASCOP matches the results of state-of-the-art scheduling-specific CP approaches. These results demonstrate the potential of BASCOP as a generic yet robust search method for CP.
Seven Challenges in Parallel SAT Solving
Hamadi, Youssef (Microsoft Research, 7 JJ Thomson Avenue, Cambridge CB3 0FB, United Kingdom) | Wintersteiger, Christoph (Microsoft Research, 7 JJ Thomson Avenue, Cambridge CB3 0FB, United Kingdom)
This paper provides a broad overview of the situation in Parallel SAT Solving. A set of challenges to researchers is presented which, we believe, must be met to ensure the practical applicability of Parallel SAT Solvers in the future. All these challenges are described informally, but put into perspective with related research results, and a (subjective) grading of difficulty for each of them is provided.
Seven Challenges in Parallel SAT Solving
Hamadi, Youssef (Microsoft Research, 7 JJ Thomson Avenue, Cambridge CB3 0FB, United Kingdom) | Wintersteiger, Christoph (Microsoft Research, 7 JJ Thomson Avenue, Cambridge CB3 0FB, United Kingdom)
This paper provides a broad overview of the situation in Parallel SAT Solving. A set of challenges to researchers is presented which, we believe, must be met to ensure the practical applicability of Parallel SAT Solvers in the future. All these challenges are described informally, but put into perspective with related research results, and a (subjective) grading of difficulty for each of them is provided.
Seven Challenges in Parallel SAT Solving
Hamadi, Youssef (Microsoft Research, Cambridge) | Wintersteiger, Christoph M (Microsoft Research, Cambridge)
This paper provides a broad overview of the situation in the area of Parallel Search with a specific focus on Parallel SAT Solving. A set of challenges to researchers is presented which, we believe, must be met to ensure the practical applicability of Parallel SAT Solvers in the future. All these challenges are described informally, but put into perspective with related research results, and a (subjective) grading of difficulty for each of them is provided.
Learning for Dynamic subsumption
Hamadi, Youssef, Jabbour, Said, Sais, Lakhdar
In this paper a new dynamic subsumption technique for Boolean CNF formulae is proposed. It exploits simple and sufficient conditions to detect during conflict analysis, clauses from the original formula that can be reduced by subsumption. During the learnt clause derivation, and at each step of the resolution process, we simply check for backward subsumption between the current resolvent and clauses from the original formula and encoded in the implication graph. Our approach give rise to a strong and dynamic simplification technique that exploits learning to eliminate literals from the original clauses. Experimental results show that the integration of our dynamic subsumption approach within the state-of-the-art SAT solvers Minisat and Rsat achieves interesting improvements particularly on crafted instances.