Goto

Collaborating Authors

 Hall, Peter


The Pitfalls of "Security by Obscurity" And What They Mean for Transparent AI

arXiv.org Artificial Intelligence

Calls for transparency in AI systems are growing in number and urgency from diverse stakeholders ranging from regulators to researchers to users (with a comparative absence of companies developing AI). Notions of transparency for AI abound, each addressing distinct interests and concerns. In computer security, transparency is likewise regarded as a key concept. The security community has for decades pushed back against so-called security by obscurity -- the idea that hiding how a system works protects it from attack -- against significant pressure from industry and other stakeholders. Over the decades, in a community process that is imperfect and ongoing, security researchers and practitioners have gradually built up some norms and practices around how to balance transparency interests with possible negative side effects. This paper asks: What insights can the AI community take from the security community's experience with transparency? We identify three key themes in the security community's perspective on the benefits of transparency and their approach to balancing transparency against countervailing interests. For each, we investigate parallels and insights relevant to transparency in AI. We then provide a case study discussion on how transparency has shaped the research subfield of anonymization. Finally, shifting our focus from similarities to differences, we highlight key transparency issues where modern AI systems present challenges different from other kinds of security-critical systems, raising interesting open questions for the security and AI communities alike.


Choice of neighbor order in nearest-neighbor classification

arXiv.org Machine Learning

The $k$th-nearest neighbor rule is arguably the simplest and most intuitively appealing nonparametric classification procedure. However, application of this method is inhibited by lack of knowledge about its properties, in particular, about the manner in which it is influenced by the value of $k$; and by the absence of techniques for empirical choice of $k$. In the present paper we detail the way in which the value of $k$ determines the misclassification error. We consider two models, Poisson and Binomial, for the training samples. Under the first model, data are recorded in a Poisson stream and are "assigned" to one or other of the two populations in accordance with the prior probabilities. In particular, the total number of data in both training samples is a Poisson-distributed random variable. Under the Binomial model, however, the total number of data in the training samples is fixed, although again each data value is assigned in a random way. Although the values of risk and regret associated with the Poisson and Binomial models are different, they are asymptotically equivalent to first order, and also to the risks associated with kernel-based classifiers that are tailored to the case of two derivatives. These properties motivate new methods for choosing the value of $k$.