Goto

Collaborating Authors

 Halevy, Alon


CoddLLM: Empowering Large Language Models for Data Analytics

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have the potential to revolutionize data analytics by simplifying tasks such as data discovery and SQL query synthesis through natural language interactions. This work serves as a pivotal first step toward the development of foundation models explicitly designed for data analytics applications. To propel this vision forward, we unveil a new data recipe for post-training LLMs, enhancing their comprehension of data management and empowering them to tackle complex real-world analytics tasks. Specifically, our innovative approach includes a scalable synthetic data generation method that enables the creation of a broad spectrum of topics centered on data representation and manipulation. Furthermore, we introduce two new tasks that seamlessly bridge tables and text. We show that such tasks can enhance models' understanding of schema creation and the nuanced translation between natural language and tabular data. Leveraging this data recipe, we post-train a new foundation model, named CoddLLM, based on Mistral-NeMo-12B. To assess the language understanding and reasoning capabilities of LLMs in the realm of data analytics, we contribute AnalyticsMMLU, a benchmark containing thousands of multiple-choice questions on databases, data analysis, and machine learning. Our focus on data discovery, has resulted in the contribution of three comprehensive benchmarks that address both database and data lake scenarios. CoddLLM not only excels in performance but also sets a new standard, achieving the highest average accuracy across eight datasets. It outperforms GPT-3.5-Turbo on AnalyticsMMLU, exceeding GPT-4o by 12.1% in table selection and showing an average improvement of 24.9% in Text-to-SQL compared to the base model.


Human-Centered Planning

arXiv.org Artificial Intelligence

LLMs have recently made impressive inroads on tasks whose output is structured, such as coding, robotic planning and querying databases. The vision of creating AI-powered personal assistants also involves creating structured outputs, such as a plan for one's day, or for an overseas trip. Here, since the plan is executed by a human, the output doesn't have to satisfy strict syntactic constraints. A useful assistant should also be able to incorporate vague constraints specified by the user in natural language. This makes LLMs an attractive option for planning. We consider the problem of planning one's day. We develop an LLM-based planner (LLMPlan) extended with the ability to self-reflect on its output and a symbolic planner (SymPlan) with the ability to translate text constraints into a symbolic representation. Despite no formal specification of constraints, we find that LLMPlan performs explicit constraint satisfaction akin to the traditional symbolic planners on average (2% performance difference), while retaining the reasoning of implicit requirements. Consequently, LLM-based planners outperform their symbolic counterparts in user satisfaction (70.5% vs. 40.4%) during interactive evaluation with 40 users.


VerifAI: Verified Generative AI

arXiv.org Artificial Intelligence

Generative AI has made significant strides, yet concerns about the accuracy and reliability of its outputs continue to grow. Such inaccuracies can have serious consequences such as inaccurate decision-making, the spread of false information, privacy violations, legal liabilities, and more. Although efforts to address these risks are underway, including explainable AI and responsible AI practices such as transparency, privacy protection, bias mitigation, and social and environmental responsibility, misinformation caused by generative AI will remain a significant challenge. We propose that verifying the outputs of generative AI from a data management perspective is an emerging issue for generative AI. This involves analyzing the underlying data from multi-modal data lakes, including text files, tables, and knowledge graphs, and assessing its quality and consistency. By doing so, we can establish a stronger foundation for evaluating the outputs of generative AI models. Such an approach can ensure the correctness of generative AI, promote transparency, and enable decision-making with greater confidence. Our vision is to promote the development of verifiable generative AI and contribute to a more trustworthy and responsible use of AI.


Factuality Challenges in the Era of Large Language Models

arXiv.org Artificial Intelligence

The emergence of tools based on Large Language Models (LLMs), such as OpenAI's ChatGPT, Microsoft's Bing Chat, and Google's Bard, has garnered immense public attention. These incredibly useful, natural-sounding tools mark significant advances in natural language generation, yet they exhibit a propensity to generate false, erroneous, or misleading content -- commonly referred to as "hallucinations." Moreover, LLMs can be exploited for malicious applications, such as generating false but credible-sounding content and profiles at scale. This poses a significant challenge to society in terms of the potential deception of users and the increasing dissemination of inaccurate information. In light of these risks, we explore the kinds of technological innovations, regulatory reforms, and AI literacy initiatives needed from fact-checkers, news organizations, and the broader research and policy communities. By identifying the risks, the imminent threats, and some viable solutions, we seek to shed light on navigating various aspects of veracity in the era of generative AI.


NormBank: A Knowledge Bank of Situational Social Norms

arXiv.org Artificial Intelligence

We present NormBank, a knowledge bank of 155k situational norms. This resource is designed to ground flexible normative reasoning for interactive, assistive, and collaborative AI systems. Unlike prior commonsense resources, NormBank grounds each inference within a multivalent sociocultural frame, which includes the setting (e.g., restaurant), the agents' contingent roles (waiter, customer), their attributes (age, gender), and other physical, social, and cultural constraints (e.g., the temperature or the country of operation). In total, NormBank contains 63k unique constraints from a taxonomy that we introduce and iteratively refine here. Constraints then apply in different combinations to frame social norms. Under these manipulations, norms are non-monotonic - one can cancel an inference by updating its frame even slightly. Still, we find evidence that neural models can help reliably extend the scope and coverage of NormBank. We further demonstrate the utility of this resource with a series of transfer experiments.


Reimagining Retrieval Augmented Language Models for Answering Queries

arXiv.org Artificial Intelligence

We present a reality check on large language models and inspect the promise of retrieval augmented language models in comparison. Such language models are semi-parametric, where models integrate model parameters and knowledge from external data sources to make their predictions, as opposed to the parametric nature of vanilla large language models. We give initial experimental findings that semi-parametric architectures can be enhanced with views, a query analyzer/planner, and provenance to make a significantly more powerful system for question answering in terms of accuracy and efficiency, and potentially for other NLP tasks


Detecting Inspiring Content on Social Media

arXiv.org Artificial Intelligence

Our work aims to facilitate by Thrash and Elliot as possessing three core such encounters by providing tools for automatic identification characteristics: evocation (i.e., it is triggered rather than of text content likely to be judged inspiring. We focus on willed), transcendence (i.e., it orients towards things outside inspiration in everyday content as judged by lay people, similar of and greater than the self), and approach motivation (i.e., it in spirit to early work by Hart who attempted to capture the energizes approach rather than avoidance [1]-[3]). Inspiration experience of inspiration in ordinary life [5], rather than "as if has two distinct stages: one an activation state that is more akin it were reserved for the gifted artist, the breakthrough scientist, to feeling and emotion, the second an urge to act.


Multimodal Neural Databases

arXiv.org Artificial Intelligence

The rise in loosely-structured data available through text, images, and other modalities has called for new ways of querying them. Multimedia Information Retrieval has filled this gap and has witnessed exciting progress in recent years. Tasks such as search and retrieval of extensive multimedia archives have undergone massive performance improvements, driven to a large extent by recent developments in multimodal deep learning. However, methods in this field remain limited in the kinds of queries they support and, in particular, their inability to answer database-like queries. For this reason, inspired by recent work on neural databases, we propose a new framework, which we name Multimodal Neural Databases (MMNDBs). MMNDBs can answer complex database-like queries that involve reasoning over different input modalities, such as text and images, at scale. In this paper, we present the first architecture able to fulfill this set of requirements and test it with several baselines, showing the limitations of currently available models. The results show the potential of these new techniques to process unstructured data coming from different modalities, paving the way for future research in the area. Code to replicate the experiments will be released at https://github.com/GiovanniTRA/MultimodalNeuralDatabases


Learnings from Data Integration for Augmented Language Models

arXiv.org Artificial Intelligence

One of the limitations of large language models is that they do not have access to up-to-date, proprietary or personal data. As a result, there are multiple efforts to extend language models with techniques for accessing external data. In that sense, LLMs share the vision of data integration systems whose goal is to provide seamless access to a large collection of heterogeneous data sources. While the details and the techniques of LLMs differ greatly from those of data integration, this paper shows that some of the lessons learned from research on data integration can elucidate the research path we are conducting today on language models.


Database Reasoning Over Text

arXiv.org Artificial Intelligence

Neural models have shown impressive performance gains in answering queries from natural language text. However, existing works are unable to support database queries, such as "List/Count all female athletes who were born in 20th century", which require reasoning over sets of relevant facts with operations such as join, filtering and aggregation. We show that while state-of-the-art transformer models perform very well for small databases, they exhibit limitations in processing noisy data, numerical operations, and queries that aggregate facts. We propose a modular architecture to answer these database-style queries over multiple spans from text and aggregating these at scale. We evaluate the architecture using WikiNLDB, a novel dataset for exploring such queries. Our architecture scales to databases containing thousands of facts whereas contemporary models are limited by how many facts can be encoded. In direct comparison on small databases, our approach increases overall answer accuracy from 85% to 90%. On larger databases, our approach retains its accuracy whereas transformer baselines could not encode the context.