Haitsiukevich, Katsiaryna
Diffusion models as probabilistic neural operators for recovering unobserved states of dynamical systems
Haitsiukevich, Katsiaryna, Poyraz, Onur, Marttinen, Pekka, Ilin, Alexander
This paper explores the efficacy of diffusion-based generative models as neural operators for partial differential equations (PDEs). Neural operators are neural networks that learn a mapping from the parameter space to the solution space of PDEs from data, and they can also solve the inverse problem of estimating the parameter from the solution. Diffusion models excel in many domains, but their potential as neural operators has not been thoroughly explored. In this work, we show that diffusion-based generative models exhibit many properties favourable for neural operators, and they can effectively generate the solution of a PDE conditionally on the parameter or recover the unobserved parts of the system. We propose to train a single model adaptable to multiple tasks, by alternating between the tasks during training. In our experiments with multiple realistic dynamical systems, diffusion models outperform other neural operators. Furthermore, we demonstrate how the probabilistic diffusion model can elegantly deal with systems which are only partially identifiable, by producing samples corresponding to the different possible solutions.
In-Context Symbolic Regression: Leveraging Language Models for Function Discovery
Merler, Matteo, Dainese, Nicola, Haitsiukevich, Katsiaryna
Symbolic Regression (SR) is a task which aims to extract the mathematical expression underlying a set of empirical observations. Transformer-based methods trained on SR datasets detain the current state-of-the-art in this task, while the application of Large Language Models (LLMs) to SR remains unexplored. This work investigates the integration of pre-trained LLMs into the SR pipeline, utilizing an approach that iteratively refines a functional form based on the prediction error it achieves on the observation set, until it reaches convergence. Our method leverages LLMs to propose an initial set of possible functions based on the observations, exploiting their strong pre-training prior. These functions are then iteratively refined by the model itself and by an external optimizer for their coefficients. The process is repeated until the results are satisfactory. We then analyze Vision-Language Models in this context, exploring the inclusion of plots as visual inputs to aid the optimization process. Our findings reveal that LLMs are able to successfully recover good symbolic equations that fit the given data, outperforming SR baselines based on Genetic Programming, with the addition of images in the input showing promising results for the most complex benchmarks.
Improved Training of Physics-Informed Neural Networks with Model Ensembles
Haitsiukevich, Katsiaryna, Ilin, Alexander
Learning the solution of partial differential equations (PDEs) with a neural network is an attractive alternative to traditional solvers due to its elegance, greater flexibility and the ease of incorporating observed data. However, training such physics-informed neural networks (PINNs) is notoriously difficult in practice since PINNs often converge to wrong solutions. In this paper, we address this problem by training an ensemble of PINNs. Our approach is motivated by the observation that individual PINN models find similar solutions in the vicinity of points with targets (e.g., observed data or initial conditions) while their solutions may substantially differ farther away from such points. Therefore, we propose to use the ensemble agreement as the criterion for gradual expansion of the solution interval, that is including new points for computing the loss derived from differential equations. Due to the flexibility of the domain expansion, our algorithm can easily incorporate measurements in arbitrary locations. In contrast to the existing PINN algorithms with time-adaptive strategies, the proposed algorithm does not need a pre-defined schedule of interval expansion and it treats time and space equally. We experimentally show that the proposed algorithm can stabilize PINN training and yield performance competitive to the recent variants of PINNs trained with time adaptation.
Learning Trajectories of Hamiltonian Systems with Neural Networks
Haitsiukevich, Katsiaryna, Ilin, Alexander
Modeling of conservative systems with neural networks is an area of active research. A popular approach is to use Hamiltonian neural networks (HNNs) which rely on the assumptions that a conservative system is described with Hamilton's equations of motion. Many recent works focus on improving the integration schemes used when training HNNs. In this work, we propose to enhance HNNs with an estimation of a continuous-time trajectory of the modeled system using an additional neural network, called a deep hidden physics model in the literature. We demonstrate that the proposed integration scheme works well for HNNs, especially with low sampling rates, noisy and irregular observations.