Goto

Collaborating Authors

 Hahn-Klimroth, Max


On a Near-Optimal \& Efficient Algorithm for the Sparse Pooled Data Problem

arXiv.org Machine Learning

The pooled data problem asks to identify the unknown labels of a set of items from condensed measurements. More precisely, given $n$ items, assume that each item has a label in $\cbc{0,1,\ldots, d}$, encoded via the ground-truth $\SIGMA$. We call the pooled data problem sparse if the number of non-zero entries of $\SIGMA$ scales as $k \sim n^{\theta}$ for $\theta \in (0,1)$. The information that is revealed about $\SIGMA$ comes from pooled measurements, each indicating how many items of each label are contained in the pool. The most basic question is to design a pooling scheme that uses as few pools as possible, while reconstructing $\SIGMA$ with high probability. Variants of the problem and its combinatorial ramifications have been studied for at least 35 years. However, the study of the modern question of \emph{efficient} inference of the labels has suggested a statistical-to-computational gap of order $\log n$ in the minimum number of pools needed for theoretically possible versus efficient inference. In this article, we resolve the question whether this $\log n$-gap is artificial or of a fundamental nature by the design of an efficient algorithm, called \algoname, based upon a novel pooling scheme on a number of pools very close to the information-theoretic threshold.


An unsupervised learning approach to evaluate questionnaire data -- what one can learn from violations of measurement invariance

arXiv.org Artificial Intelligence

In several branches of the social sciences and humanities, surveys based on standardized questionnaires are a prominent research tool. While there are a variety of ways to analyze the data, some standard procedures have become established. When those surveys want to analyze differences in the answer patterns of different groups (e.g., countries, gender, age, ...), these procedures can only be carried out in a meaningful way if there is measurement invariance, i.e., the measured construct has psychometric equivalence across groups. As recently raised as an open problem by Sauerwein et al. (2021), new evaluation methods that work in the absence of measurement invariance are needed. This paper promotes an unsupervised learning-based approach to such research data by proposing a procedure that works in three phases: data preparation, clustering of questionnaires, and measuring similarity based on the obtained clustering and the properties of each group. We generate synthetic data in three data sets, which allows us to compare our approach with the PCA approach under measurement invariance and under violated measurement invariance. As a main result, we obtain that the approach provides a natural comparison between groups and a natural description of the response patterns of the groups. Moreover, it can be safely applied to a wide variety of data sets, even in the absence of measurement invariance. Finally, this approach allows us to translate (violations of) measurement invariance into a meaningful measure of similarity.


A Notion of Feature Importance by Decorrelation and Detection of Trends by Random Forest Regression

arXiv.org Artificial Intelligence

In many studies, we want to determine the influence of certain features on a dependent variable. More specifically, we are interested in the strength of the influence -- i.e., is the feature relevant? -- and, if so, how the feature influences the dependent variable. Recently, data-driven approaches such as \emph{random forest regression} have found their way into applications (Boulesteix et al., 2012). These models allow to directly derive measures of feature importance, which are a natural indicator of the strength of the influence. For the relevant features, the correlation or rank correlation between the feature and the dependent variable has typically been used to determine the nature of the influence. More recent methods, some of which can also measure interactions between features, are based on a modeling approach. In particular, when machine learning models are used, SHAP scores are a recent and prominent method to determine these trends (Lundberg et al., 2017). In this paper, we introduce a novel notion of feature importance based on the well-studied Gram-Schmidt decorrelation method. Furthermore, we propose two estimators for identifying trends in the data using random forest regression, the so-called absolute and relative transversal rate. We empirically compare the properties of our estimators with those of well-established estimators on a variety of synthetic and real-world datasets.


Efficient Approximate Recovery from Pooled Data Using Doubly Regular Pooling Schemes

arXiv.org Artificial Intelligence

In the pooled data problem we are given $n$ agents with hidden state bits, either $0$ or $1$. The hidden states are unknown and can be seen as the underlying ground truth $\sigma$. To uncover that ground truth, we are given a querying method that queries multiple agents at a time. Each query reports the sum of the states of the queried agents. Our goal is to learn the hidden state bits using as few queries as possible. So far, most literature deals with exact reconstruction of all hidden state bits. We study a more relaxed variant in which we allow a small fraction of agents to be classified incorrectly. This becomes particularly relevant in the noisy variant of the pooled data problem where the queries' results are subject to random noise. In this setting, we provide a doubly regular test design that assigns agents to queries. For this design we analyze an approximate reconstruction algorithm that estimates the hidden bits in a greedy fashion. We give a rigorous analysis of the algorithm's performance, its error probability, and its approximation quality. As a main technical novelty, our analysis is uniform in the degree of noise and the sparsity of $\sigma$. Finally, simulations back up our theoretical findings and provide strong empirical evidence that our algorithm works well for realistic sample sizes.