Hagiwara, Masato
Robust detection of overlapping bioacoustic sound events
Mahon, Louis, Hoffman, Benjamin, James, Logan S, Cusimano, Maddie, Hagiwara, Masato, Woolley, Sarah C, Pietquin, Olivier
We propose a method for accurately detecting bioacoustic sound events that is robust to overlapping events, a common issue in domains such as ethology, ecology and conservation. While standard methods employ a frame-based, multi-label approach, we introduce an onset-based detection method which we name Voxaboxen. It takes inspiration from object detection methods in computer vision, but simultaneously takes advantage of recent advances in self-supervised audio encoders. For each time window, Voxaboxen predicts whether it contains the start of a vocalization and how long the vocalization is. It also does the same in reverse, predicting whether each window contains the end of a vocalization, and how long ago it started. The two resulting sets of bounding boxes are then fused using a graph-matching algorithm. We also release a new dataset designed to measure performance on detecting overlapping vocalizations. This consists of recordings of zebra finches annotated with temporally-strong labels and showing frequent overlaps. We test Voxaboxen on seven existing data sets and on our new data set. We compare Voxaboxen to natural baselines and existing sound event detection methods and demonstrate SotA results. Further experiments show that improvements are robust to frequent vocalization overlap.
NatureLM-audio: an Audio-Language Foundation Model for Bioacoustics
Robinson, David, Miron, Marius, Hagiwara, Masato, Pietquin, Olivier
Large language models (LLMs) prompted with text and audio represent the state of the art in various auditory tasks, including speech, music, and general audio, showing emergent abilities on unseen tasks. However, these capabilities have yet to be fully demonstrated in bioacoustics tasks, such as detecting animal vocalizations in large recordings, classifying rare and endangered species, and labeling context and behavior - tasks that are crucial for conservation, biodiversity monitoring, and the study of animal behavior. In this work, we present NatureLM-audio, the first audio-language foundation model specifically designed for bioacoustics. Our carefully curated training dataset comprises text-audio pairs spanning a diverse range of bioacoustics, speech, and music data, designed to address the challenges posed by limited annotated datasets in the field. We demonstrate successful transfer of learned representations from music and speech to bioacoustics, and our model shows promising generalization to unseen taxa and tasks. Importantly, we test NatureLM-audio on a novel benchmark (BEANS-Zero) and it sets the new state of the art (SotA) on several bioacoustics tasks, including zero-shot classification of unseen species. To advance bioacoustics research, we also open-source the code for generating training and benchmark data, as well as for training the model.
Project MOSLA: Recording Every Moment of Second Language Acquisition
Hagiwara, Masato, Tanner, Joshua
Second language acquisition (SLA) is a complex and dynamic process. Many SLA studies that have attempted to record and analyze this process have typically focused on a single modality (e.g., textual output of learners), covered only a short period of time, and/or lacked control (e.g., failed to capture every aspect of the learning process). In Project MOSLA (Moments of Second Language Acquisition), we have created a longitudinal, multimodal, multilingual, and controlled dataset by inviting participants to learn one of three target languages (Arabic, Spanish, and Chinese) from scratch over a span of two years, exclusively through online instruction, and recording every lesson using Zoom. The dataset is semi-automatically annotated with speaker/language IDs and transcripts by both human annotators and fine-tuned state-of-the-art speech models. Our experiments reveal linguistic insights into learners' proficiency development over time, as well as the potential for automatically detecting the areas of focus on the screen purely from the unannotated multimodal data. Our dataset is freely available for research purposes and can serve as a valuable resource for a wide range of applications, including but not limited to SLA, proficiency assessment, language and speech processing, pedagogy, and multimodal learning analytics.
ISPA: Inter-Species Phonetic Alphabet for Transcribing Animal Sounds
Hagiwara, Masato, Miron, Marius, Liu, Jen-Yu
Traditionally, bioacoustics has relied on spectrograms and continuous, per-frame audio representations for the analysis of animal sounds, also serving as input to machine learning models. Meanwhile, the International Phonetic Alphabet (IPA) system has provided an interpretable, language-independent method for transcribing human speech sounds. In this paper, we introduce ISPA (Inter-Species Phonetic Alphabet), a precise, concise, and interpretable system designed for transcribing animal sounds into text. We compare acoustics-based and feature-based methods for transcribing and classifying animal sounds, demonstrating their comparable performance with baseline methods utilizing continuous, dense audio representations. By representing animal sounds with text, we effectively treat them as a "foreign language," and we show that established human language ML paradigms and models, such as language models, can be successfully applied to improve performance.