Goto

Collaborating Authors

 Hado P. van Hasselt



Successor Features for Transfer in Reinforcement Learning

Neural Information Processing Systems

Transfer in reinforcement learning refers to the notion that generalization should occur not only within a task but also across tasks. We propose a transfer framework for the scenario where the reward function changes between tasks but the environment's dynamics remain the same. Our approach rests on two key ideas: successor features, a value function representation that decouples the dynamics of the environment from the rewards, and generalized policy improvement, a generalization of dynamic programming's policy improvement operation that considers a set of policies rather than a single one. Put together, the two ideas lead to an approach that integrates seamlessly within the reinforcement learning framework and allows the free exchange of information across tasks. The proposed method also provides performance guarantees for the transferred policy even before any learning has taken place. We derive two theorems that set our approach in firm theoretical ground and present experiments that show that it successfully promotes transfer in practice, significantly outperforming alternative methods in a sequence of navigation tasks and in the control of a simulated robotic arm.



Meta-Gradient Reinforcement Learning

Neural Information Processing Systems

The goal of reinforcement learning algorithms is to estimate and/or optimise the value function. However, unlike supervised learning, no teacher or oracle is available to provide the true value function. Instead, the majority of reinforcement learning algorithms estimate and/or optimise a proxy for the value function. This proxy is typically based on a sampled and bootstrapped approximation to the true value function, known as a return. The particular choice of return is one of the chief components determining the nature of the algorithm: the rate at which future rewards are discounted; when and how values should be bootstrapped; or even the nature of the rewards themselves.


Discovery of Useful Questions as Auxiliary Tasks

Neural Information Processing Systems

Arguably, intelligent agents ought to be able to discover their own questions so that in learning answers for them they learn unanticipated useful knowledge and skills; this departs from the focus in much of machine learning on agents learning answers to externally defined questions. We present a novel method for a reinforcement learning (RL) agent to discover questions formulated as general value functions or GVFs, a fairly rich form of knowledge representation. Specifically, our method uses non-myopic meta-gradients to learn GVF-questions such that learning answers to them, as an auxiliary task, induces useful representations for the main task faced by the RL agent. We demonstrate that auxiliary tasks based on the discovered GVFs are sufficient, on their own, to build representations that support main task learning, and that they do so better than popular hand-designed auxiliary tasks from the literature. Furthermore, we show, in the context of Atari 2600 videogames, how such auxiliary tasks, meta-learned alongside the main task, can improve the data efficiency of an actor-critic agent.


Discovery of Useful Questions as Auxiliary Tasks

Neural Information Processing Systems

Arguably, intelligent agents ought to be able to discover their own questions so that in learning answers for them they learn unanticipated useful knowledge and skills; this departs from the focus in much of machine learning on agents learning answers to externally defined questions. We present a novel method for a reinforcement learning (RL) agent to discover questions formulated as general value functions or GVFs, a fairly rich form of knowledge representation. Specifically, our method uses non-myopic meta-gradients to learn GVF-questions such that learning answers to them, as an auxiliary task, induces useful representations for the main task faced by the RL agent. We demonstrate that auxiliary tasks based on the discovered GVFs are sufficient, on their own, to build representations that support main task learning, and that they do so better than popular hand-designed auxiliary tasks from the literature. Furthermore, we show, in the context of Atari 2600 videogames, how such auxiliary tasks, meta-learned alongside the main task, can improve the data efficiency of an actor-critic agent.


Learning values across many orders of magnitude

Neural Information Processing Systems

Most learning algorithms are not invariant to the scale of the signal that is being approximated. We propose to adaptively normalize the targets used in the learning updates. This is important in value-based reinforcement learning, where the magnitude of appropriate value approximations can change over time when we update the policy of behavior. Our main motivation is prior work on learning to play Atari games, where the rewards were clipped to a predetermined range. This clipping facilitates learning across many different games with a single learning algorithm, but a clipped reward function can result in qualitatively different behavior. Using adaptive normalization we can remove this domain-specific heuristic without diminishing overall performance.


Natural Value Approximators: Learning when to Trust Past Estimates

Neural Information Processing Systems

Neural networks have a smooth initial inductive bias, such that small changes in input do not lead to large changes in output. However, in reinforcement learning domains with sparse rewards, value functions have non-smooth structure with a characteristic asymmetric discontinuity whenever rewards arrive. We propose a mechanism that learns an interpolation between a direct value estimate and a projected value estimate computed from the encountered reward and the previous estimate. This reduces the need to learn about discontinuities, and thus improves the value function approximation. Furthermore, as the interpolation is learned and state-dependent, our method can deal with heterogeneous observability. We demonstrate that this one change leads to significant improvements on multiple Atari games, when applied to the state-of-the-art A3C algorithm.


Successor Features for Transfer in Reinforcement Learning

Neural Information Processing Systems

Transfer in reinforcement learning refers to the notion that generalization should occur not only within a task but also across tasks. We propose a transfer framework for the scenario where the reward function changes between tasks but the environment's dynamics remain the same. Our approach rests on two key ideas: successor features, a value function representation that decouples the dynamics of the environment from the rewards, and generalized policy improvement, a generalization of dynamic programming's policy improvement operation that considers a set of policies rather than a single one. Put together, the two ideas lead to an approach that integrates seamlessly within the reinforcement learning framework and allows the free exchange of information across tasks. The proposed method also provides performance guarantees for the transferred policy even before any learning has taken place. We derive two theorems that set our approach in firm theoretical ground and present experiments that show that it successfully promotes transfer in practice, significantly outperforming alternative methods in a sequence of navigation tasks and in the control of a simulated robotic arm.