Hadfield, Simon
Differential Adjusted Parity for Learning Fair Representations
Sahyouni, Bucher, Vowels, Matthew, Chen, Liqun, Hadfield, Simon
The development of fair and unbiased machine learning models remains an ongoing objective for researchers in the field of artificial intelligence. We introduce the Differential Adjusted Parity (DAP) loss to produce unbiased informative representations. It utilises a differentiable variant of the adjusted parity metric to create a unified objective function. By combining downstream task classification accuracy and its inconsistency across sensitive feature domains, it provides a single tool to increase performance and mitigate bias. A key element in this approach is the use of soft balanced accuracies. In contrast to previous non-adversarial approaches, DAP does not suffer a degeneracy where the metric is satisfied by performing equally poorly across all sensitive domains. It outperforms several adversarial models on downstream task accuracy and fairness in our analysis. Specifically, it improves the demographic parity, equalized odds and sensitive feature accuracy by as much as 22.5\%, 44.1\% and 40.1\%, respectively, when compared to the best performing adversarial approaches on these metrics. Overall, the DAP loss and its associated metric can play a significant role in creating more fair machine learning models.
PEnG: Pose-Enhanced Geo-Localisation
Shore, Tavis, Mendez, Oscar, Hadfield, Simon
Cross-view Geo-localisation is typically performed at a coarse granularity, because densely sampled satellite image patches overlap heavily. This heavy overlap would make disambiguating patches very challenging. However, by opting for sparsely sampled patches, prior work has placed an artificial upper bound on the localisation accuracy that is possible. Even a perfect oracle system cannot achieve accuracy greater than the average separation of the tiles. To solve this limitation, we propose combining cross-view geo-localisation and relative pose estimation to increase precision to a level practical for real-world application. We develop PEnG, a 2-stage system which first predicts the most likely edges from a city-scale graph representation upon which a query image lies. It then performs relative pose estimation within these edges to determine a precise position. PEnG presents the first technique to utilise both viewpoints available within cross-view geo-localisation datasets to enhance precision to a sub-metre level, with some examples achieving centimetre level accuracy. Our proposed ensemble achieves state-of-the-art precision - with relative Top-5m retrieval improvements on previous works of 213%. Decreasing the median euclidean distance error by 96.90% from the previous best of 734m down to 22.77m, when evaluating with 90 degree horizontal FOV images. Code will be made available: tavisshore.co.uk/PEnG
Kick Back & Relax++: Scaling Beyond Ground-Truth Depth with SlowTV & CribsTV
Spencer, Jaime, Russell, Chris, Hadfield, Simon, Bowden, Richard
Self-supervised learning is the key to unlocking generic computer vision systems. By eliminating the reliance on ground-truth annotations, it allows scaling to much larger data quantities. Unfortunately, self-supervised monocular depth estimation (SS-MDE) has been limited by the absence of diverse training data. Existing datasets have focused exclusively on urban driving in densely populated cities, resulting in models that fail to generalize beyond this domain. To address these limitations, this paper proposes two novel datasets: SlowTV and CribsTV. These are large-scale datasets curated from publicly available YouTube videos, containing a total of 2M training frames. They offer an incredibly diverse set of environments, ranging from snowy forests to coastal roads, luxury mansions and even underwater coral reefs. We leverage these datasets to tackle the challenging task of zero-shot generalization, outperforming every existing SS-MDE approach and even some state-of-the-art supervised methods. The generalization capabilities of our models are further enhanced by a range of components and contributions: 1) learning the camera intrinsics, 2) a stronger augmentation regime targeting aspect ratio changes, 3) support frame randomization, 4) flexible motion estimation, 5) a modern transformer-based architecture. We demonstrate the effectiveness of each component in extensive ablation experiments. To facilitate the development of future research, we make the datasets, code and pretrained models available to the public at https://github.com/jspenmar/slowtv_monodepth.
BEV-CV: Birds-Eye-View Transform for Cross-View Geo-Localisation
Shore, Tavis, Hadfield, Simon, Mendez, Oscar
Cross-view image matching for geo-localisation is a challenging problem due to the significant visual difference between aerial and ground-level viewpoints. The method provides localisation capabilities from geo-referenced images, eliminating the need for external devices or costly equipment. This enhances the capacity of agents to autonomously determine their position, navigate, and operate effectively in environments where GPS signals are unavailable. Current research employs a variety of techniques to reduce the domain gap such as applying polar transforms to aerial images or synthesising between perspectives. However, these approaches generally rely on having a 360{\deg} field of view, limiting real-world feasibility. We propose BEV-CV, an approach which introduces two key novelties. Firstly we bring ground-level images into a semantic Birds-Eye-View before matching embeddings, allowing for direct comparison with aerial segmentation representations. Secondly, we introduce the use of a Normalised Temperature-scaled Cross Entropy Loss to the sub-field, achieving faster convergence than with the standard triplet loss. BEV-CV achieves state-of-the-art recall accuracies, improving feature extraction Top-1 rates by more than 300%, and Top-1% rates by approximately 150% for 70{\deg} crops, and for orientation-aware application we achieve a 35% Top-1 accuracy increase with 70{\deg} crops.
ZeST-NeRF: Using temporal aggregation for Zero-Shot Temporal NeRFs
Gonzรกlez, Violeta Menรฉndez, Gilbert, Andrew, Phillipson, Graeme, Jolly, Stephen, Hadfield, Simon
In the field of media production, video editing techniques play a pivotal role. Recent approaches have had great success at performing novel view image synthesis of static scenes. But adding temporal information adds an extra layer of complexity. Previous models have focused on implicitly representing static and dynamic scenes using NeRF. These models achieve impressive results but are costly at training and inference time. They overfit an MLP to describe the scene implicitly as a function of position. This paper proposes ZeST-NeRF, a new approach that can produce temporal NeRFs for new scenes without retraining. We can accurately reconstruct novel views using multi-view synthesis techniques and scene flow-field estimation, trained only with unrelated scenes. We demonstrate how existing state-of-the-art approaches from a range of fields cannot adequately solve this new task and demonstrate the efficacy of our solution. The resulting network improves quantitatively by 15% and produces significantly better visual results.
Kick Back & Relax: Learning to Reconstruct the World by Watching SlowTV
Spencer, Jaime, Russell, Chris, Hadfield, Simon, Bowden, Richard
Self-supervised monocular depth estimation (SS-MDE) has the potential to scale to vast quantities of data. Unfortunately, existing approaches limit themselves to the automotive domain, resulting in models incapable of generalizing to complex environments such as natural or indoor settings. To address this, we propose a large-scale SlowTV dataset curated from YouTube, containing an order of magnitude more data than existing automotive datasets. SlowTV contains 1.7M images from a rich diversity of environments, such as worldwide seasonal hiking, scenic driving and scuba diving. Using this dataset, we train an SS-MDE model that provides zero-shot generalization to a large collection of indoor/outdoor datasets. The resulting model outperforms all existing SSL approaches and closes the gap on supervised SoTA, despite using a more efficient architecture. We additionally introduce a collection of best-practices to further maximize performance and zero-shot generalization. This includes 1) aspect ratio augmentation, 2) camera intrinsic estimation, 3) support frame randomization and 4) flexible motion estimation. Code is available at https://github.com/jspenmar/slowtv_monodepth.
EDeNN: Event Decay Neural Networks for low latency vision
Walters, Celyn, Hadfield, Simon
Despite the success of neural networks in computer vision tasks, digital 'neurons' are a very loose approximation of biological neurons. Today's learning approaches are designed to function on digital devices with digital data representations such as image frames. In contrast, biological vision systems are generally much more capable and efficient than state-of-the-art digital computer vision algorithms. Event cameras are an emerging sensor technology which imitates biological vision with asynchronously firing pixels, eschewing the concept of the image frame. To leverage modern learning techniques, many event-based algorithms are forced to accumulate events back to image frames, somewhat squandering the advantages of event cameras. We follow the opposite paradigm and develop a new type of neural network which operates closer to the original event data stream. We demonstrate state-of-the-art performance in angular velocity regression and competitive optical flow estimation, while avoiding difficulties related to training SNN. Furthermore, the processing latency of our proposed approach is less than 1/10 any other implementation, while continuous inference increases this improvement by another order of magnitude.
The Second Monocular Depth Estimation Challenge
Spencer, Jaime, Qian, C. Stella, Trescakova, Michaela, Russell, Chris, Hadfield, Simon, Graf, Erich W., Adams, Wendy J., Schofield, Andrew J., Elder, James, Bowden, Richard, Anwar, Ali, Chen, Hao, Chen, Xiaozhi, Cheng, Kai, Dai, Yuchao, Hoa, Huynh Thai, Hossain, Sadat, Huang, Jianmian, Jing, Mohan, Li, Bo, Li, Chao, Li, Baojun, Liu, Zhiwen, Mattoccia, Stefano, Mercelis, Siegfried, Nam, Myungwoo, Poggi, Matteo, Qi, Xiaohua, Ren, Jiahui, Tang, Yang, Tosi, Fabio, Trinh, Linh, Uddin, S. M. Nadim, Umair, Khan Muhammad, Wang, Kaixuan, Wang, Yufei, Wang, Yixing, Xiang, Mochu, Xu, Guangkai, Yin, Wei, Yu, Jun, Zhang, Qi, Zhao, Chaoqiang
This paper discusses the results for the second edition of the Monocular Depth Estimation Challenge (MDEC). This edition was open to methods using any form of supervision, including fully-supervised, self-supervised, multi-task or proxy depth. The challenge was based around the SYNS-Patches dataset, which features a wide diversity of environments with high-quality dense ground-truth. This includes complex natural environments, e.g. forests or fields, which are greatly underrepresented in current benchmarks. The challenge received eight unique submissions that outperformed the provided SotA baseline on any of the pointcloud- or image-based metrics. The top supervised submission improved relative F-Score by 27.62%, while the top self-supervised improved it by 16.61%. Supervised submissions generally leveraged large collections of datasets to improve data diversity. Self-supervised submissions instead updated the network architecture and pretrained backbones. These results represent a significant progress in the field, while highlighting avenues for future research, such as reducing interpolation artifacts at depth boundaries, improving self-supervised indoor performance and overall natural image accuracy.
CERiL: Continuous Event-based Reinforcement Learning
Walters, Celyn, Hadfield, Simon
This paper explores the potential of event cameras to enable continuous time reinforcement learning. We formalise this problem where a continuous stream of unsynchronised observations is used to produce a corresponding stream of output actions for the environment. This lack of synchronisation enables greatly enhanced reactivity. We present a method to train on event streams derived from standard RL environments, thereby solving the proposed continuous time RL problem. The CERiL algorithm uses specialised network layers which operate directly on an event stream, rather than aggregating events into quantised image frames. We show the advantages of event streams over less-frequent RGB images. The proposed system outperforms networks typically used in RL, even succeeding at tasks which cannot be solved traditionally. We also demonstrate the value of our CERiL approach over a standard SNN baseline using event streams.
Deconstructing Self-Supervised Monocular Reconstruction: The Design Decisions that Matter
Spencer, Jaime, Russell, Chris, Hadfield, Simon, Bowden, Richard
This paper presents an open and comprehensive framework to systematically evaluate state-of-the-art contributions to self-supervised monocular depth estimation. This includes pretraining, backbone, architectural design choices and loss functions. Many papers in this field claim novelty in either architecture design or loss formulation. However, simply updating the backbone of historical systems results in relative improvements of 25%, allowing them to outperform the majority of existing systems. A systematic evaluation of papers in this field was not straightforward. The need to compare like-with-like in previous papers means that longstanding errors in the evaluation protocol are ubiquitous in the field. It is likely that many papers were not only optimized for particular datasets, but also for errors in the data and evaluation criteria. To aid future research in this area, we release a modular codebase (https://github.com/jspenmar/monodepth_benchmark), allowing for easy evaluation of alternate design decisions against corrected data and evaluation criteria. We re-implement, validate and re-evaluate 16 state-of-the-art contributions and introduce a new dataset (SYNS-Patches) containing dense outdoor depth maps in a variety of both natural and urban scenes. This allows for the computation of informative metrics in complex regions such as depth boundaries.