Haber, Eldad
Towards Efficient Training of Graph Neural Networks: A Multiscale Approach
Gal, Eshed, Eliasof, Moshe, Schönlieb, Carola-Bibiane, Haber, Eldad, Treister, Eran
Graph Neural Networks (GNNs) have emerged as a powerful tool for learning and inferring from graph-structured data, and are widely used in a variety of applications, often considering large amounts of data and large graphs. However, training on such data requires large memory and extensive computations. In this paper, we introduce a novel framework for efficient multiscale training of GNNs, designed to integrate information across multiscale representations of a graph. Our approach leverages a hierarchical graph representation, taking advantage of coarse graph scales in the training process, where each coarse scale graph has fewer nodes and edges. Based on this approach, we propose a suite of GNN training methods: such as coarse-to-fine, sub-to-full, and multiscale gradient computation. We demonstrate the effectiveness of our methods on various datasets and learning tasks.
Probabilistic Forecasting for Dynamical Systems with Missing or Imperfect Data
Rout, Siddharth, Haber, Eldad, Gaudreault, Stéphane
The modeling of dynamical systems is essential in many fields, but applying machine learning techniques is often challenging due to incomplete or noisy data. This study introduces a variant of stochastic interpolation (SI) for probabilistic forecasting, estimating future states as distributions rather than single-point predictions. We explore its mathematical foundations and demonstrate its effectiveness on various dynamical systems, including the challenging WeatherBench dataset.
Iterative Flow Matching -- Path Correction and Gradual Refinement for Enhanced Generative Modeling
Haber, Eldad, Ahamed, Shadab, Siddiqui, Md. Shahriar Rahim, Zakariaei, Niloufar, Eliasof, Moshe
Generative models for image generation are now commonly used for a wide variety of applications, ranging from guided image generation for entertainment to solving inverse problems. Nonetheless, training a generator is a non-trivial feat that requires fine-tuning and can lead to so-called hallucinations, that is, the generation of images that are unrealistic. In this work, we explore image generation using flow matching. We explain and demonstrate why flow matching can generate hallucinations, and propose an iterative process to improve the generation process. Our iterative process can be integrated into virtually $\textit{any}$ generative modeling technique, thereby enhancing the performance and robustness of image synthesis systems.
Inversion of Magnetic Data using Learned Dictionaries and Scale Space
Ahamed, Shadab, Ghyselincks, Simon, Arias, Pablo Chang Huang, Kloiber, Julian, Ranjbar, Yasin, Tang, Jingrong, Zakariaei, Niloufar, Haber, Eldad
Magnetic data inversion is an important tool in geophysics, used to infer subsurface magnetic susceptibility distributions from surface magnetic field measurements. This inverse problem is inherently ill-posed, characterized by non-unique solutions, depth ambiguity, and sensitivity to noise. Traditional inversion approaches rely on predefined regularization techniques to stabilize solutions, limiting their adaptability to complex or diverse geological scenarios. In this study, we propose an approach that integrates variable dictionary learning and scale-space methods to address these challenges. Our method employs learned dictionaries, allowing for adaptive representation of complex subsurface features that are difficult to capture with predefined bases. Additionally, we extend classical variational inversion by incorporating multi-scale representations through a scale-space framework, enabling the progressive introduction of structural detail while mitigating overfitting. We implement both fixed and dynamic dictionary learning techniques, with the latter introducing iteration-dependent dictionaries for enhanced flexibility. Using a synthetic dataset to simulate geological scenarios, we demonstrate significant improvements in reconstruction accuracy and robustness compared to conventional variational and dictionary-based methods. Our results highlight the potential of learned dictionaries, especially when coupled with scale-space dynamics, to improve model recovery and noise handling. These findings underscore the promise of our data-driven approach for advance magnetic data inversion and its applications in geophysical exploration, environmental assessment, and mineral prospecting.
Multiscale Training of Convolutional Neural Networks
Zakariaei, Niloufar, Ahamed, Shadab, Haber, Eldad, Eliasof, Moshe
Convolutional Neural Networks (CNNs) are the backbone of many deep learning methods, but optimizing them remains computationally expensive. To address this, we explore multiscale training frameworks and mathematically identify key challenges, particularly when dealing with noisy inputs. Our analysis reveals that in the presence of noise, the gradient of standard CNNs in multiscale training may fail to converge as the mesh-size approaches to , undermining the optimization process. This insight drives the development of Mesh-Free Convolutions (MFCs), which are independent of input scale and avoid the pitfalls of traditional convolution kernels. We demonstrate that MFCs, with their robust gradient behavior, ensure convergence even with noisy inputs, enabling more efficient neural network optimization in multiscale settings. To validate the generality and effectiveness of our multiscale training approach, we show that (i) MFCs can theoretically deliver substantial computational speedups without sacrificing performance in practice, and (ii) standard convolutions benefit from our multiscale training framework in practice.
DAWN-SI: Data-Aware and Noise-Informed Stochastic Interpolation for Solving Inverse Problems
Ahamed, Shadab, Haber, Eldad
Inverse problems, which involve estimating parameters from incomplete or noisy observations, arise in various fields such as medical imaging, geophysics, and signal processing. These problems are often ill-posed, requiring regularization techniques to stabilize the solution. In this work, we employ $\textit{Stochastic Interpolation}$ (SI), a generative framework that integrates both deterministic and stochastic processes to map a simple reference distribution, such as a Gaussian, to the target distribution. Our method $\textbf{DAWN-SI}$: $\textbf{D}$ata-$\textbf{AW}$are and $\textbf{N}$oise-informed $\textbf{S}$tochastic $\textbf{I}$nterpolation incorporates data and noise embedding, allowing the model to access representations about the measured data explicitly and also account for noise in the observations, making it particularly robust in scenarios where data is noisy or incomplete. By learning a time-dependent velocity field, SI not only provides accurate solutions but also enables uncertainty quantification by generating multiple plausible outcomes. Unlike pre-trained diffusion models, which may struggle in highly ill-posed settings, our approach is trained specifically for each inverse problem and adapts to varying noise levels. We validate the effectiveness and robustness of our method through extensive numerical experiments on tasks such as image deblurring and tomography.
Advection Augmented Convolutional Neural Networks
Zakariaei, Niloufar, Rout, Siddharth, Haber, Eldad, Eliasof, Moshe
Many problems in physical sciences are characterized by the prediction of space-time sequences. Such problems range from weather prediction to the analysis of disease propagation and video prediction. Modern techniques for the solution of these problems typically combine Convolution Neural Networks (CNN) architecture with a time prediction mechanism. However, oftentimes, such approaches underperform in the long-range propagation of information and lack explainability. In this work, we introduce a physically inspired architecture for the solution of such problems. Namely, we propose to augment CNNs with advection by designing a novel semi-Lagrangian push operator. We show that the proposed operator allows for the non-local transformation of information compared with standard convolutional kernels. We then complement it with Reaction and Diffusion neural components to form a network that mimics the Reaction-Advection-Diffusion equation, in high dimensions. We demonstrate the effectiveness of our network on a number of spatio-temporal datasets that show their merit.
Deep Optimal Experimental Design for Parameter Estimation Problems
Siddiqui, Md Shahriar Rahim, Rahmim, Arman, Haber, Eldad
Optimal experimental design is a well studied field in applied science and engineering. Techniques for estimating such a design are commonly used within the framework of parameter estimation. Nonetheless, in recent years parameter estimation techniques are changing rapidly with the introduction of deep learning techniques to replace traditional estimation methods. This in turn requires the adaptation of optimal experimental design that is associated with these new techniques. In this paper we investigate a new experimental design methodology that uses deep learning. We show that the training of a network as a Likelihood Free Estimator can be used to significantly simplify the design process and circumvent the need for the computationally expensive bi-level optimization problem that is inherent in optimal experimental design for non-linear systems. Furthermore, deep design improves the quality of the recovery process for parameter estimation problems. As proof of concept we apply our methodology to two different systems of Ordinary Differential Equations.
Beyond Conventional Parametric Modeling: Data-Driven Framework for Estimation and Prediction of Time Activity Curves in Dynamic PET Imaging
Zakariaei, Niloufar, Rahmim, Arman, Haber, Eldad
Dynamic Positron Emission Tomography (dPET) imaging and Time-Activity Curve (TAC) analyses are essential for understanding and quantifying the biodistribution of radiopharmaceuticals over time and space. Traditional compartmental modeling, while foundational, commonly struggles to fully capture the complexities of biological systems, including non-linear dynamics and variability. This study introduces an innovative data-driven neural network-based framework, inspired by Reaction Diffusion systems, designed to address these limitations. Our approach, which adaptively fits TACs from dPET, enables the direct calibration of diffusion coefficients and reaction terms from observed data, offering significant improvements in predictive accuracy and robustness over traditional methods, especially in complex biological scenarios.
Paired Autoencoders for Inverse Problems
Chung, Matthias, Hart, Emma, Chung, Julianne, Peters, Bas, Haber, Eldad
We consider the solution of nonlinear inverse problems where the forward problem is a discretization of a partial differential equation. Such problems are notoriously difficult to solve in practice and require minimizing a combination of a data-fit term and a regularization term. The main computational bottleneck of typical algorithms is the direct estimation of the data misfit. Therefore, likelihood-free approaches have become appealing alternatives. Nonetheless, difficulties in generalization and limitations in accuracy have hindered their broader utility and applicability. In this work, we use a paired autoencoder framework as a likelihood-free estimator for inverse problems. We show that the use of such an architecture allows us to construct a solution efficiently and to overcome some known open problems when using likelihood-free estimators. In particular, our framework can assess the quality of the solution and improve on it if needed. We demonstrate the viability of our approach using examples from full waveform inversion and inverse electromagnetic imaging.