Ha, Hyeonjeong
MM-PoisonRAG: Disrupting Multimodal RAG with Local and Global Poisoning Attacks
Ha, Hyeonjeong, Zhan, Qiusi, Kim, Jeonghwan, Bralios, Dimitrios, Sanniboina, Saikrishna, Peng, Nanyun, Chang, Kai-Wei, Kang, Daniel, Ji, Heng
Multimodal large language models (MLLMs) equipped with Retrieval Augmented Generation (RAG) leverage both their rich parametric knowledge and the dynamic, external knowledge to excel in tasks such as Question Answering. While RAG enhances MLLMs by grounding responses in query-relevant external knowledge, this reliance poses a critical yet underexplored safety risk: knowledge poisoning attacks, where misinformation or irrelevant knowledge is intentionally injected into external knowledge bases to manipulate model outputs to be incorrect and even harmful. To expose such vulnerabilities in multimodal RAG, we propose MM-PoisonRAG, a novel knowledge poisoning attack framework with two attack strategies: Localized Poisoning Attack (LPA), which injects query-specific misinformation in both text and images for targeted manipulation, and Globalized Poisoning Attack (GPA) to provide false guidance during MLLM generation to elicit nonsensical responses across all queries. We evaluate our attacks across multiple tasks, models, and access settings, demonstrating that LPA successfully manipulates the MLLM to generate attacker-controlled answers, with a success rate of up to 56% on MultiModalQA. Moreover, GPA completely disrupts model generation to 0% accuracy with just a single irrelevant knowledge injection. Our results highlight the urgent need for robust defenses against knowledge poisoning to safeguard multimodal RAG frameworks.
Synthia: Novel Concept Design with Affordance Composition
Jin, Xiaomeng, Ha, Hyeonjeong, Kim, Jeonghwan, Liu, Jiateng, Wang, Zhenhailong, Nguyen, Khanh Duy, Blume, Ansel, Peng, Nanyun, Chang, Kai-wei, Ji, Heng
Text-to-image (T2I) models enable rapid concept design, making them widely used in AI-driven design. While recent studies focus on generating semantic and stylistic variations of given design concepts, functional coherence--the integration of multiple affordances into a single coherent concept--remains largely overlooked. In this paper, we introduce SYNTHIA, a framework for generating novel, functionally coherent designs based on desired affordances. Our approach leverages a hierarchical concept ontology that decomposes concepts into parts and affordances, serving as a crucial building block for functionally coherent design. We also develop a curriculum learning scheme based on our ontology that contrastively fine-tunes T2I models to progressively learn affordance composition while maintaining visual novelty. To elaborate, we (i) gradually increase affordance distance, guiding models from basic concept-affordance association to complex affordance compositions that integrate parts of distinct affordances into a single, coherent form, and (ii) enforce visual novelty by employing contrastive objectives to push learned representations away from existing concepts. Experimental results show that SYNTHIA outperforms state-of-the-art T2I models, demonstrating absolute gains of 25.1% and 14.7% for novelty and functional coherence in human evaluation, respectively.
Effective Targeted Attacks for Adversarial Self-Supervised Learning
Kim, Minseon, Ha, Hyeonjeong, Son, Sooel, Hwang, Sung Ju
Recently, unsupervised adversarial training (AT) has been highlighted as a means of achieving robustness in models without any label information. Previous studies in unsupervised AT have mostly focused on implementing self-supervised learning (SSL) frameworks, which maximize the instance-wise classification loss to generate adversarial examples. However, we observe that simply maximizing the self-supervised training loss with an untargeted adversarial attack often results in generating ineffective adversaries that may not help improve the robustness of the trained model, especially for non-contrastive SSL frameworks without negative examples. To tackle this problem, we propose a novel positive mining for targeted adversarial attack to generate effective adversaries for adversarial SSL frameworks. Specifically, we introduce an algorithm that selects the most confusing yet similar target example for a given instance based on entropy and similarity, and subsequently perturbs the given instance towards the selected target. Our method demonstrates significant enhancements in robustness when applied to non-contrastive SSL frameworks, and less but consistent robustness improvements with contrastive SSL frameworks, on the benchmark datasets.
Learning Transferable Adversarial Robust Representations via Multi-view Consistency
Kim, Minseon, Ha, Hyeonjeong, Lee, Dong Bok, Hwang, Sung Ju
Despite the success on few-shot learning problems, most meta-learned models only focus on achieving good performance on clean examples and thus easily break down when given adversarially perturbed samples. While some recent works have shown that a combination of adversarial learning and meta-learning could enhance the robustness of a meta-learner against adversarial attacks, they fail to achieve generalizable adversarial robustness to unseen domains and tasks, which is the ultimate goal of meta-learning. To address this challenge, we propose a novel meta-adversarial multi-view representation learning framework with dual encoders. Specifically, we introduce the discrepancy across the two differently augmented samples of the same data instance by first updating the encoder parameters with them and further imposing a novel label-free adversarial attack to maximize their discrepancy. Then, we maximize the consistency across the views to learn transferable robust representations across domains and tasks. Through experimental validation on multiple benchmarks, we demonstrate the effectiveness of our framework on few-shot learning tasks from unseen domains, achieving over 10\% robust accuracy improvements against previous adversarial meta-learning baselines.
Generalizable Lightweight Proxy for Robust NAS against Diverse Perturbations
Ha, Hyeonjeong, Kim, Minseon, Hwang, Sung Ju
Recent neural architecture search (NAS) frameworks have been successful in finding optimal architectures for given conditions (e.g., performance or latency). However, they search for optimal architectures in terms of their performance on clean images only, while robustness against various types of perturbations or corruptions is crucial in practice. Although there exist several robust NAS frameworks that tackle this issue by integrating adversarial training into one-shot NAS, however, they are limited in that they only consider robustness against adversarial attacks and require significant computational resources to discover optimal architectures for a single task, which makes them impractical in real-world scenarios. To address these challenges, we propose a novel lightweight robust zero-cost proxy that considers the consistency across features, parameters, and gradients of both clean and perturbed images at the initialization state. Our approach facilitates an efficient and rapid search for neural architectures capable of learning generalizable features that exhibit robustness across diverse perturbations. The experimental results demonstrate that our proxy can rapidly and efficiently search for neural architectures that are consistently robust against various perturbations on multiple benchmark datasets and diverse search spaces, largely outperforming existing clean zero-shot NAS and robust NAS with reduced search cost.