Goto

Collaborating Authors

 Ha, Eun Young


A Generalized Multidimensional Evaluation Framework for Player Goal Recognition

AAAI Conferences

Recent years have seen a growing interest in player modeling, which supports the creation of player-adaptive digital games. A central problem of player modeling is goal recognition, which aims to recognize players’ intentions from observable gameplay behaviors. Player goal recognition offers the promise of enabling games to dynamically adjust challenge levels, perform procedural content generation, and create believable NPC interactions. A growing body of work is investigating a wide range of machine learning-based goal recognition models. In this paper, we introduce GOALIE, a multidimensional framework for evaluating player goal recognition models. The framework integrates multiple metrics for player goal recognition models, including two novel metrics, n-early convergence rate and standardized convergence point . We demonstrate the application of the GOALIE framework with the evaluation of several player goal recognition models, including Markov logic network-based, deep feedforward neural network-based, and long short-term memory network-based goal recognizers on two different educational games. The results suggest that GOALIE effectively captures goal recognition behaviors that are key to next-generation player modeling.


Deep Learning-Based Goal Recognition in Open-Ended Digital Games

AAAI Conferences

While many open-ended digital games feature non-linear storylines and multiple solution paths, it is challenging for game developers to create effective game experiences in these settings due to the freedom given to the player. To address these challenges, goal recognition, a computational player-modeling task, has been investigated to enable digital games to dynamically predict players’ goals. This paper presents a goal recognition framework based on stacked denoising autoencoders, a variant of deep learning. The learned goal recognition models, which are trained from a corpus of player interactions, not only offer improved performance, but also offer the substantial advantage of eliminating the need for labor-intensive feature engineering. An evaluation demonstrates that the deep learning-based goal recognition framework significantly outperforms the previous state-of-the-art goal recognition approach based on Markov logic networks.


Recognizing Effective and Student-Adaptive Tutor Moves in Task-Oriented Tutorial Dialogue

AAAI Conferences

One-on-one tutoring is significantly more effective than traditional classroom instruction. In recent years, automated tutoring systems are approaching that level of effectiveness by engaging students in rich natural language dialogue that contributes to learning. A promising approach for further improving the effectiveness of tutorial dialogue systems is to model the differential effectiveness of tutorial strategies, identifying which dialogue moves or combinations of dialogue moves are associated with learning. It is also important to model the ways in which experienced tutors adapt to learner characteristics. This paper takes a corpus- based approach to these modeling tasks, presenting the results of a study in which task-oriented, textual tutorial dialogue was collected from remote one-on-one human tutoring sessions. The data reveal patterns of dialogue moves that are correlated with learning, and can directly inform the design of student-adaptive tutorial dialogue management systems.


Goal Recognition with Markov Logic Networks for Player-Adaptive Games

AAAI Conferences

Goal recognition is the task of inferring users’ goals from sequences of observed actions. By enabling player-adaptive digital games to dynamically adjust their behavior in concert with players’ changing goals, goal recognition can inform adaptive decision making for a broad range of entertainment, training, and education applications. This paper presents a goal recognition framework based on Markov logic networks (MLN). The model’s parameters are directly learned from a corpus of actions that was collected through player interactions with a non-linear educational game. An empirical evaluation demonstrates that the MLN goal recognition framework accurately predicts players’ goals in a game environment with multiple solution paths.