Hébert-Dufresne, Laurent
Complex contagions can outperform simple contagions for network reconstruction with dense networks or saturated dynamics
Landry, Nicholas W., Thompson, William, Hébert-Dufresne, Laurent, Young, Jean-Gabriel
Network scientists often use complex dynamic processes to describe network contagions, but tools for fitting contagion models typically assume simple dynamics. Here, we address this gap by developing a nonparametric method to reconstruct a network and dynamics from a series of node states, using a model that breaks the dichotomy between simple pairwise and complex neighborhood-based contagions. We then show that a network is more easily reconstructed when observed through the lens of complex contagions if it is dense or the dynamic saturates, and that simple contagions are better otherwise.
Multidisciplinary learning through collective performance favors decentralization
Meluso, John, Hébert-Dufresne, Laurent
Many models of learning in teams assume that team members can share solutions or learn concurrently. However, these assumptions break down in multidisciplinary teams where team members often complete distinct, interrelated pieces of larger tasks. Such contexts make it difficult for individuals to separate the performance effects of their own actions from the actions of interacting neighbors. In this work, we show that individuals can overcome this challenge by learning from network neighbors through mediating artifacts (like collective performance assessments). When neighbors' actions influence collective outcomes, teams with different networks perform relatively similarly to one another. However, varying a team's network can affect performance on tasks that weight individuals' contributions by network properties. Consequently, when individuals innovate (through ``exploring'' searches), dense networks hurt performance slightly by increasing uncertainty. In contrast, dense networks moderately help performance when individuals refine their work (through ``exploiting'' searches) by efficiently finding local optima. We also find that decentralization improves team performance across a battery of 34 tasks. Our results offer design principles for multidisciplinary teams within which other forms of learning prove more difficult.
Network archaeology: phase transition in the recoverability of network history
Young, Jean-Gabriel, Hébert-Dufresne, Laurent, Laurence, Edward, Murphy, Charles, St-Onge, Guillaume, Desrosiers, Patrick
Network growth processes can be understood as generative models of the structure and history of complex networks. This point of view naturally leads to the problem of network archaeology: Reconstructing all the past states of a network from its structure---a difficult permutation inference problem. In this paper, we introduce a Bayesian formulation of network archaeology, with a generalization of preferential attachment as our generative mechanism. We develop a sequential importance sampling algorithm to evaluate the posterior averages of this model, as well as an efficient heuristic that uncovers the history of a network in linear time. We use these methods to identify and characterize a phase transition in the quality of the reconstructed history, when they are applied to artificial networks generated by the model itself. Despite the existence of a no-recovery phase, we find that non-trivial inference is possible in a large portion of the parameter space as well as on empirical data.