Goto

Collaborating Authors

 Guzdial, Matthew


Label-Free Subjective Player Experience Modelling via Let's Play Videos

arXiv.org Artificial Intelligence

Player Experience Modelling (PEM) is the study of AI techniques applied to modelling a player's experience within a video game. PEM development can be labour-intensive, requiring expert hand-authoring or specialized data collection. In this work, we propose a novel PEM development approach, approximating player experience from gameplay video. We evaluate this approach predicting affect in the game Angry Birds via a human subject study. We validate that our PEM can strongly correlate with self-reported and sensor measures of affect, demonstrating the potential of this approach.


Mechanic Maker: Accessible Game Development Via Symbolic Learning Program Synthesis

arXiv.org Artificial Intelligence

Game development is a highly technical practice that traditionally requires programming skills. This serves as a barrier to entry for would-be developers or those hoping to use games as part of their creative expression. While there have been prior game development tools focused on accessibility, they generally still require programming, or have major limitations in terms of the kinds of games they can make. In this paper we introduce Mechanic Maker, a tool for creating a wide-range of game mechanics without programming. It instead relies on a backend symbolic learning system to synthesize game mechanics from examples. We conducted a user study to evaluate the benefits of the tool for participants with a variety of programming and game development experience. Our results demonstrated that participants' ability to use the tool was unrelated to programming ability. We conclude that tools like ours could help democratize game development, making the practice accessible regardless of programming skills.


Evaluating the Effects of AI Directors for Quest Selection

arXiv.org Artificial Intelligence

Modern commercial games are designed for mass appeal, not for individual players, but there is a unique opportunity in video games to better fit the individual through adapting game elements. In this paper, we focus on AI Directors, systems which can dynamically modify a game, that personalize the player experience to match the player's preference. In the past, some AI Director studies have provided inconclusive results, so their effect on player experience is not clear. We take three AI Directors and directly compare them in a human subject study to test their effectiveness on quest selection. Our results show that a non-random AI Director provides a better player experience than a random AI Director.


Stress Detection from Photoplethysmography in a Virtual Reality Environment

arXiv.org Artificial Intelligence

Personalized virtual reality exposure therapy is a therapeutic practice that can adapt to an individual patient, leading to better health outcomes. Measuring a patient's mental state to adjust the therapy is a critical but difficult task. Most published studies use subjective methods to estimate a patient's mental state, which can be inaccurate. This article proposes a virtual reality exposure therapy (VRET) platform capable of assessing a patient's mental state using non-intrusive and widely available physiological signals such as photoplethysmography (PPG). In a case study, we evaluate how PPG signals can be used to detect two binary classifications: peaceful and stressful states. Sixteen healthy subjects were exposed to the two VR environments (relaxed and stressful). Using LOSO cross-validation, our best classification model could predict the two states with a 70.6% accuracy which outperforms many more complex approaches.


Spiders Based on Anxiety: How Reinforcement Learning Can Deliver Desired User Experience in Virtual Reality Personalized Arachnophobia Treatment

arXiv.org Artificial Intelligence

The need to generate a spider to provoke a desired anxiety response arises in the context of personalized virtual reality exposure therapy (VRET), a treatment approach for arachnophobia. This treatment involves patients observing virtual spiders in order to become desensitized and decrease their phobia, which requires that the spiders elicit specific anxiety responses. However, VRET approaches tend to require therapists to hand-select the appropriate spider for each patient, which is a time-consuming process and takes significant technical knowledge and patient insight. While automated methods exist, they tend to employ rules-based approaches with minimal ability to adapt to specific users. To address these challenges, we present a framework for VRET utilizing procedural content generation (PCG) and reinforcement learning (RL), which automatically adapts a spider to elicit a desired anxiety response. We demonstrate the superior performance of this system compared to a more common rules-based VRET method.


Human-AI Collaboration in Real-World Complex Environment with Reinforcement Learning

arXiv.org Artificial Intelligence

Recent advances in reinforcement learning (RL) and Human-in-the-Loop (HitL) learning have made human-AI collaboration easier for humans to team with AI agents. Leveraging human expertise and experience with AI in intelligent systems can be efficient and beneficial. Still, it is unclear to what extent human-AI collaboration will be successful, and how such teaming performs compared to humans or AI agents only. In this work, we show that learning from humans is effective and that human-AI collaboration outperforms human-controlled and fully autonomous AI agents in a complex simulation environment. In addition, we have developed a new simulator for critical infrastructure protection, focusing on a scenario where AI-powered drones and human teams collaborate to defend an airport against enemy drone attacks. We develop a user interface to allow humans to assist AI agents effectively. We demonstrated that agents learn faster while learning from policy correction compared to learning from humans or agents. Furthermore, human-AI collaboration requires lower mental and temporal demands, reduces human effort, and yields higher performance than if humans directly controlled all agents. In conclusion, we show that humans can provide helpful advice to the RL agents, allowing them to improve learning in a multi-agent setting.


Reconstructing Existing Levels through Level Inpainting

arXiv.org Artificial Intelligence

Procedural Content Generation (PCG) and Procedural Content Generation via Machine Learning (PCGML) have been used in prior work for generating levels in various games. This paper introduces Content Augmentation and focuses on the subproblem of level inpainting, which involves reconstructing and extending video game levels. Drawing inspiration from image inpainting, we adapt two techniques from this domain to address our specific use case. We present two approaches for level inpainting: an Autoencoder and a U-net. Through a comprehensive case study, we demonstrate their superior performance compared to a baseline method and discuss their relative merits. Furthermore, we provide a practical demonstration of both approaches for the level inpainting task and offer insights into potential directions for future research.


Mechanic Maker 2.0: Reinforcement Learning for Evaluating Generated Rules

arXiv.org Artificial Intelligence

Automated game design (AGD), the study of automatically generating game rules, has a long history in technical games research. AGD approaches generally rely on approximations of human play, either objective functions or AI agents. Despite this, the majority of these approximators are static, meaning they do not reflect human player's ability to learn and improve in a game. In this paper, we investigate the application of Reinforcement Learning (RL) as an approximator for human play for rule generation. We recreate the classic AGD environment Mechanic Maker in Unity as a new, open-source rule generation framework. Our results demonstrate that RL produces distinct sets of rules from an A* agent baseline, which may be more usable by humans.


Tree-Based Reconstructive Partitioning: A Novel Low-Data Level Generation Approach

arXiv.org Artificial Intelligence

Procedural Content Generation (PCG) is the algorithmic generation of content, often applied to games. PCG and PCG via Machine Learning (PCGML) have appeared in published games. However, it can prove difficult to apply these approaches in the early stages of an in-development game. PCG requires expertise in representing designer notions of quality in rules or functions, and PCGML typically requires significant training data, which may not be available early in development. In this paper, we introduce Tree-based Reconstructive Partitioning (TRP), a novel PCGML approach aimed to address this problem. Our results, across two domains, demonstrate that TRP produces levels that are more playable and coherent, and that the approach is more generalizable with less training data. We consider TRP to be a promising new approach that can afford the introduction of PCGML into the early stages of game development without requiring human expertise or significant training data.


Joint Level Generation and Translation Using Gameplay Videos

arXiv.org Artificial Intelligence

Procedural Content Generation via Machine Learning (PCGML) faces a significant hurdle that sets it apart from other fields, such as image or text generation, which is limited annotated data. Many existing methods for procedural level generation via machine learning require a secondary representation besides level images. However, the current methods for obtaining such representations are laborious and time-consuming, which contributes to this problem. In this work, we aim to address this problem by utilizing gameplay videos of two human-annotated games to develop a novel multi-tail framework that learns to perform simultaneous level translation and generation. The translation tail of our framework can convert gameplay video frames to an equivalent secondary representation, while its generation tail can produce novel level segments. Evaluation results and comparisons between our framework and baselines suggest that combining the level generation and translation tasks can lead to an overall improved performance regarding both tasks. This represents a possible solution to limited annotated level data, and we demonstrate the potential for future versions to generalize to unseen games.