Goto

Collaborating Authors

 Gutteridge, Benjamin


Judge a Book by its Cover: Investigating Multi-Modal LLMs for Multi-Page Handwritten Document Transcription

arXiv.org Artificial Intelligence

Handwritten text recognition (HTR) remains a challenging task, particularly for multi-page documents where pages share common formatting and contextual features. While modern optical character recognition (OCR) engines are proficient with printed text, their performance on handwriting is limited, often requiring costly labeled data for fine-tuning. In this paper, we explore the use of multi-modal large language models (MLLMs) for transcribing multi-page handwritten documents in a zero-shot setting. We investigate various configurations of commercial OCR engines and MLLMs, utilizing the latter both as end-to-end transcribers and as post-processors, with and without image components. We propose a novel method, + FIRST PAGE, which enhances MLLM transcription by providing the OCR output of the entire document along with just the first page image . This approach leverages shared document features without incurring the high cost of processing all images. Experiments on a multi-page version of the IAM Handwriting Database demonstrate that + FIRST PAGE improves transcription accuracy, balances cost with performance, and even enhances results on out-of-sample text by extrapolating formatting and OCR error patterns from a single page. Introduction A significant proportion of all human-written text exists only in the form of physical handwritten documents.


On Vanishing Gradients, Over-Smoothing, and Over-Squashing in GNNs: Bridging Recurrent and Graph Learning

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) are models that leverage the graph structure to transmit information between nodes, typically through the message-passing operation. While widely successful, this approach is well known to suffer from the over-smoothing and over-squashing phenomena, which result in representational collapse as the number of layers increases and insensitivity to the information contained at distant and poorly connected nodes, respectively. In this paper, we present a unified view of these problems through the lens of vanishing gradients, using ideas from linear control theory for our analysis. We propose an interpretation of GNNs as recurrent models and empirically demonstrate that a simple state-space formulation of a GNN effectively alleviates over-smoothing and over-squashing at no extra trainable parameter cost. Further, we show theoretically and empirically that (i) GNNs are by design prone to extreme gradient vanishing even after a few layers; (ii) Over-smoothing is directly related to the mechanism causing vanishing gradients; (iii) Over-squashing is most easily alleviated by a combination of graph rewiring and vanishing gradient mitigation. We believe our work will help bridge the gap between the recurrent and graph neural network literature and will unlock the design of new deep and performant GNNs.


DRew: Dynamically Rewired Message Passing with Delay

arXiv.org Artificial Intelligence

Message passing neural networks (MPNNs) have been shown to suffer from the phenomenon of over-squashing that causes poor performance for tasks relying on long-range interactions. This can be largely attributed to message passing only occurring locally, over a node's immediate neighbours. Rewiring approaches attempting to make graphs 'more connected', and supposedly better suited to long-range tasks, often lose the inductive bias provided by distance on the graph since they make distant nodes communicate instantly at every layer. In this paper we propose a framework, applicable to any MPNN architecture, that performs a layer-dependent rewiring to ensure gradual densification of the graph. We also propose a delay mechanism that permits skip connections between nodes depending on the layer and their mutual distance. We validate our approach on several long-range tasks and show that it outperforms graph Transformers and multi-hop MPNNs.