Gupta, Vinayak
Differentiable Adversarial Attacks for Marked Temporal Point Processes
Chakraborty, Pritish, Gupta, Vinayak, R, Rahul, Bedathur, Srikanta J., De, Abir
Marked temporal point processes (MTPPs) have been shown to be extremely effective in modeling continuous time event sequences (CTESs). In this work, we present adversarial attacks designed specifically for MTPP models. A key criterion for a good adversarial attack is its imperceptibility. For objects such as images or text, this is often achieved by bounding perturbation in some fixed $L_p$ norm-ball. However, similarly minimizing distance norms between two CTESs in the context of MTPPs is challenging due to their sequential nature and varying time-scales and lengths. We address this challenge by first permuting the events and then incorporating the additive noise to the arrival timestamps. However, the worst case optimization of such adversarial attacks is a hard combinatorial problem, requiring exploration across a permutation space that is factorially large in the length of the input sequence. As a result, we propose a novel differentiable scheme PERMTPP using which we can perform adversarial attacks by learning to minimize the likelihood, while minimizing the distance between two CTESs. Our experiments on four real-world datasets demonstrate the offensive and defensive capabilities, and lower inference times of PERMTPP.
Efficient and Responsible Adaptation of Large Language Models for Robust and Equitable Top-k Recommendations
Kaur, Kirandeep, Chadha, Manya, Gupta, Vinayak, Shah, Chirag
Conventional recommendation systems (RSs) are typically optimized to enhance performance metrics uniformly across all training samples, inadvertently overlooking the needs of diverse user populations. The performance disparity among various populations can harm the model's robustness to sub-populations due to the varying user properties. While large language models (LLMs) show promise in enhancing RS performance, their practical applicability is hindered by high costs, inference latency, and degraded performance on long user queries. To address these challenges, we propose a hybrid task allocation framework designed to promote social good by equitably serving all user groups. By adopting a two-phase approach, we promote a strategic assignment of tasks for efficient and responsible adaptation of LLMs. Our strategy works by first identifying the weak and inactive users that receive a suboptimal ranking performance by RSs. Next, we use an in-context learning approach for such users, wherein each user interaction history is contextualized as a distinct ranking task. We evaluate our hybrid framework by incorporating eight different recommendation algorithms and three different LLMs -- both open and close-sourced. Our results on three real-world datasets show a significant reduction in weak users and improved robustness to subpopulations without disproportionately escalating costs.
PaintScene4D: Consistent 4D Scene Generation from Text Prompts
Gupta, Vinayak, Man, Yunze, Wang, Yu-Xiong
Recent advances in diffusion models have revolutionized 2D and 3D content creation, yet generating photorealistic dynamic 4D scenes remains a significant challenge. Existing dynamic 4D generation methods typically rely on distilling knowledge from pre-trained 3D generative models, often fine-tuned on synthetic object datasets. Consequently, the resulting scenes tend to be object-centric and lack photorealism. While text-to-video models can generate more realistic scenes with motion, they often struggle with spatial understanding and provide limited control over camera viewpoints during rendering. To address these limitations, we present PaintScene4D, a novel text-to-4D scene generation framework that departs from conventional multi-view generative models in favor of a streamlined architecture that harnesses video generative models trained on diverse real-world datasets. Our method first generates a reference video using a video generation model, and then employs a strategic camera array selection for rendering. We apply a progressive warping and inpainting technique to ensure both spatial and temporal consistency across multiple viewpoints. Finally, we optimize multi-view images using a dynamic renderer, enabling flexible camera control based on user preferences. Adopting a training-free architecture, our PaintScene4D efficiently produces realistic 4D scenes that can be viewed from arbitrary trajectories. The code will be made publicly available. Our project page is at https://paintscene4d.github.io/
Are Language Models Actually Useful for Time Series Forecasting?
Tan, Mingtian, Merrill, Mike A., Gupta, Vinayak, Althoff, Tim, Hartvigsen, Thomas
Large language models (LLMs) are being applied to time series tasks, particularly time series forecasting. However, are language models actually useful for time series? After a series of ablation studies on three recent and popular LLM-based time series forecasting methods, we find that removing the LLM component or replacing it with a basic attention layer does not degrade the forecasting results -- in most cases the results even improved. We also find that despite their significant computational cost, pretrained LLMs do no better than models trained from scratch, do not represent the sequential dependencies in time series, and do not assist in few-shot settings. Additionally, we explore time series encoders and reveal that patching and attention structures perform similarly to state-of-the-art LLM-based forecasters.
Language Models Still Struggle to Zero-shot Reason about Time Series
Merrill, Mike A., Tan, Mingtian, Gupta, Vinayak, Hartvigsen, Tom, Althoff, Tim
Time series are critical for decision-making in fields like finance and healthcare. Their importance has driven a recent influx of works passing time series into language models, leading to non-trivial forecasting on some datasets. But it remains unknown whether non-trivial forecasting implies that language models can reason about time series. To address this gap, we generate a first-of-its-kind evaluation framework for time series reasoning, including formal tasks and a corresponding dataset of multi-scale time series paired with text captions across ten domains. Using these data, we probe whether language models achieve three forms of reasoning: (1) Etiological Reasoning - given an input time series, can the language model identify the scenario that most likely created it? (2) Question Answering - can a language model answer factual questions about time series? (3) Context-Aided Forecasting - does highly relevant textual context improve a language model's time series forecasts? We find that otherwise highly-capable language models demonstrate surprisingly limited time series reasoning: they score marginally above random on etiological and question answering tasks (up to 30 percentage points worse than humans) and show modest success in using context to improve forecasting. These weakness showcase that time series reasoning is an impactful, yet deeply underdeveloped direction for language model research. We also make our datasets and code public at to support further research in this direction at https://github.com/behavioral-data/TSandLanguage
Tapestry of Time and Actions: Modeling Human Activity Sequences using Temporal Point Process Flows
Gupta, Vinayak, Bedathur, Srikanta
Human beings always engage in a vast range of activities and tasks that demonstrate their ability to adapt to different scenarios. Any human activity can be represented as a temporal sequence of actions performed to achieve a certain goal. Unlike the time series datasets extracted from electronics or machines, these action sequences are highly disparate in their nature -- the time to finish a sequence of actions can vary between different persons. Therefore, understanding the dynamics of these sequences is essential for many downstream tasks such as activity length prediction, goal prediction, next action recommendation, etc. Existing neural network-based approaches that learn a continuous-time activity sequence (or CTAS) are limited to the presence of only visual data or are designed specifically for a particular task, i.e., limited to next action or goal prediction. In this paper, we present ProActive, a neural marked temporal point process (MTPP) framework for modeling the continuous-time distribution of actions in an activity sequence while simultaneously addressing three high-impact problems -- next action prediction, sequence-goal prediction, and end-to-end sequence generation. Specifically, we utilize a self-attention module with temporal normalizing flows to model the influence and the inter-arrival times between actions in a sequence. In addition, we propose a novel addition over the ProActive model that can handle variations in the order of actions, i.e., different methods of achieving a given goal. We demonstrate that this variant can learn the order in which the person or actor prefers to do their actions. Extensive experiments on sequences derived from three activity recognition datasets show the significant accuracy boost of ProActive over the state-of-the-art in terms of action and goal prediction, and the first-ever application of end-to-end action sequence generation.
Retrieving Continuous Time Event Sequences using Neural Temporal Point Processes with Learnable Hashing
Gupta, Vinayak, Bedathur, Srikanta, De, Abir
Temporal sequences have become pervasive in various real-world applications. Consequently, the volume of data generated in the form of continuous time-event sequence(s) or CTES(s) has increased exponentially in the past few years. Thus, a significant fraction of the ongoing research on CTES datasets involves designing models to address downstream tasks such as next-event prediction, long-term forecasting, sequence classification etc. The recent developments in predictive modeling using marked temporal point processes (MTPP) have enabled an accurate characterization of several real-world applications involving the CTESs. However, due to the complex nature of these CTES datasets, the task of large-scale retrieval of temporal sequences has been overlooked by the past literature. In detail, by CTES retrieval we mean that for an input query sequence, a retrieval system must return a ranked list of relevant sequences from a large corpus. To tackle this, we propose NeuroSeqRet, a first-of-its-kind framework designed specifically for end-to-end CTES retrieval. Specifically, NeuroSeqRet introduces multiple enhancements over standard retrieval frameworks and first applies a trainable unwarping function on the query sequence which makes it comparable with corpus sequences, especially when a relevant query-corpus pair has individually different attributes. Next, it feeds the unwarped query sequence and the corpus sequence into MTPP-guided neural relevance models. We develop four variants of the relevance model for different kinds of applications based on the trade-off between accuracy and efficiency. We also propose an optimization framework to learn binary sequence embeddings from the relevance scores, suitable for the locality-sensitive hashing. Our experiments show the significant accuracy boost of NeuroSeqRet as well as the efficacy of our hashing mechanism.
Modeling Time-Series and Spatial Data for Recommendations and Other Applications
Gupta, Vinayak
With the research directions described in this thesis, we seek to address the critical challenges in designing recommender systems that can understand the dynamics of continuous-time event sequences. We follow a ground-up approach, i.e., first, we address the problems that may arise due to the poor quality of CTES data being fed into a recommender system. Later, we handle the task of designing accurate recommender systems. To improve the quality of the CTES data, we address a fundamental problem of overcoming missing events in temporal sequences. Moreover, to provide accurate sequence modeling frameworks, we design solutions for points-of-interest recommendation, i.e., models that can handle spatial mobility data of users to various POI check-ins and recommend candidate locations for the next check-in. Lastly, we highlight that the capabilities of the proposed models can have applications beyond recommender systems, and we extend their abilities to design solutions for large-scale CTES retrieval and human activity prediction. A significant part of this thesis uses the idea of modeling the underlying distribution of CTES via neural marked temporal point processes (MTPP). Traditional MTPP models are stochastic processes that utilize a fixed formulation to capture the generative mechanism of a sequence of discrete events localized in continuous time. In contrast, neural MTPP combine the underlying ideas from the point process literature with modern deep learning architectures. The ability of deep-learning models as accurate function approximators has led to a significant gain in the predictive prowess of neural MTPP models. In this thesis, we utilize and present several neural network-based enhancements for the current MTPP frameworks for the aforementioned real-world applications.