Goto

Collaborating Authors

 Gupta, Shivanshu


Unraveling Indirect In-Context Learning Using Influence Functions

arXiv.org Artificial Intelligence

This work introduces a novel paradigm for generalized In-Context Learning (ICL), termed Indirect In-Context Learning. In Indirect ICL, we explore demonstration selection strategies tailored for two distinct real-world scenarios: Mixture of Tasks and Noisy Demonstrations. We systematically evaluate the effectiveness of Influence Functions (IFs) as a selection tool for these settings, highlighting the potential for IFs to better capture the informativeness of examples within the demonstration pool. For the Mixture of Tasks setting, demonstrations are drawn from 28 diverse tasks, including MMLU, BigBench, StrategyQA, and CommonsenseQA. We demonstrate that combining BertScore-Recall (BSR) with an IF surrogate model can significantly improve performance, leading to average absolute accuracy gains of 0.37\% and 1.45\% for 3-shot and 5-shot setups when compared to traditional ICL metrics. In the Noisy Demonstrations setting, we examine scenarios where demonstrations might be mislabeled. Our experiments show that reweighting traditional ICL selectors (BSR and Cosine Similarity) with IF-based selectors boosts accuracy by an average of 2.90\% for Cosine Similarity and 2.94\% for BSR on noisy GLUE benchmarks. In sum, we propose a robust framework for demonstration selection that generalizes beyond traditional ICL, offering valuable insights into the role of IFs for Indirect ICL.


GistScore: Learning Better Representations for In-Context Example Selection with Gist Bottlenecks

arXiv.org Artificial Intelligence

Large language models (LLMs) have the ability to perform in-context learning (ICL) of new tasks by conditioning on prompts comprising a few task examples. This work studies the problem of selecting the best examples given a candidate pool to improve ICL performance on given a test input. Existing approaches either require training with feedback from a much larger LLM or are computationally expensive. We propose a novel metric, GistScore, based on Example Gisting, a novel approach for training example retrievers for ICL using an attention bottleneck via Gisting, a recent technique for compressing task instructions. To tradeoff performance with ease of use, we experiment with both fine-tuning gist models on each dataset and multi-task training a single model on a large collection of datasets. On 21 diverse datasets spanning 9 tasks, we show that our fine-tuned models get state-of-the-art ICL performance with 20% absolute average gain over off-the-shelf retrievers and 7% over the best prior methods. Our multi-task model generalizes well out-of-the-box to new task categories, datasets, and prompt templates with retrieval speeds that are consistently thousands of times faster than the best prior training-free method.


Leveraging Code to Improve In-context Learning for Semantic Parsing

arXiv.org Artificial Intelligence

In-context learning (ICL) is an appealing approach for semantic parsing due to its few-shot nature and improved generalization. However, learning to parse to rare domain-specific languages (DSLs) from just a few demonstrations is challenging, limiting the performance of even the most capable LLMs. In this work, we improve the effectiveness of ICL for semantic parsing by (1) using general-purpose programming languages such as Python instead of DSLs, and (2) augmenting prompts with a structured domain description that includes, e.g., the available classes and functions. We show that both these changes significantly improve accuracy across three popular datasets. Combined, they lead to dramatic improvements (e.g. 7.9% to 66.5% on SMCalFlow compositional split), nearly closing the performance gap between easier i.i.d.\ and harder compositional splits when used with a strong model, and reducing the need for a large number of demonstrations. We find that the resemblance of the target parse language to general-purpose code is a more important factor than the language's popularity in pre-training corpora. Our findings provide an improved methodology for building semantic parsers in the modern context of ICL with LLMs.


Coverage-based Example Selection for In-Context Learning

arXiv.org Artificial Intelligence

In-context learning (ICL), the ability of large language models to perform novel tasks by conditioning on a prompt with a few task examples, requires these examples to be informative about the test instance. The standard approach of independently ranking and selecting the most similar examples selects redundant examples while omitting important information. In this work, we show that BERTScore-Recall (BSR) selects better examples that demonstrate more of the salient aspects, e.g. reasoning patterns, of the test input. We further extend BSR and many standard metrics to easily optimizable set-level metrics, giving still better coverage of those salient aspects. On 15 datasets spanning 6 tasks and with 7 diverse LLMs, we show that (1) BSR is the superior metric for in-context example selection across the board, and (2) for compositional tasks, set selection using Set-BSR outperforms independent ranking by up to 17 points on average and, despite being training-free, surpasses methods that leverage task or LLM-specific training.


Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages

arXiv.org Artificial Intelligence

While impressive performance has been achieved on the task of Answer Sentence Selection (AS2) for English, the same does not hold for languages that lack large labeled datasets. In this work, we propose Cross-Lingual Knowledge Distillation (CLKD) from a strong English AS2 teacher as a method to train AS2 models for low-resource languages in the tasks without the need of labeled data for the target language. To evaluate our method, we introduce 1) Xtr-WikiQA, a translation-based WikiQA dataset for 9 additional languages, and 2) TyDi-AS2, a multilingual AS2 dataset with over 70K questions spanning 8 typologically diverse languages. We conduct extensive experiments on Xtr-WikiQA and TyDi-AS2 with multiple teachers, diverse monolingual and multilingual pretrained language models (PLMs) as students, and both monolingual and multilingual training. The results demonstrate that CLKD either outperforms or rivals even supervised fine-tuning with the same amount of labeled data and a combination of machine translation and the teacher model. Our method can potentially enable stronger AS2 models for low-resource languages, while TyDi-AS2 can serve as the largest multilingual AS2 dataset for further studies in the research community.


Successive Prompting for Decomposing Complex Questions

arXiv.org Artificial Intelligence

Answering complex questions that require making latent decisions is a challenging task, especially when limited supervision is available. Recent works leverage the capabilities of large language models (LMs) to perform complex question answering in a few-shot setting by demonstrating how to output intermediate rationalizations while solving the complex question in a single pass. We introduce ``Successive Prompting'', where we iteratively break down a complex task into a simple task, solve it, and then repeat the process until we get the final solution. Successive prompting decouples the supervision for decomposing complex questions from the supervision for answering simple questions, allowing us to (1) have multiple opportunities to query in-context examples at each reasoning step (2) learn question decomposition separately from question answering, including using synthetic data, and (3) use bespoke (fine-tuned) components for reasoning steps where a large LM does not perform well. The intermediate supervision is typically manually written, which can be expensive to collect. We introduce a way to generate a synthetic dataset which can be used to bootstrap a model's ability to decompose and answer intermediate questions. Our best model (with successive prompting) achieves an improvement of ~5% absolute F1 on a few-shot version of the DROP dataset when compared with a state-of-the-art model with the same supervision.