Gupta, Rahul
JAB: Joint Adversarial Prompting and Belief Augmentation
Mehrabi, Ninareh, Goyal, Palash, Ramakrishna, Anil, Dhamala, Jwala, Ghosh, Shalini, Zemel, Richard, Chang, Kai-Wei, Galstyan, Aram, Gupta, Rahul
With the recent surge of language models in different applications, attention to safety and robustness of these models has gained significant importance. Here we introduce a joint framework in which we simultaneously probe and improve the robustness of a black-box target model via adversarial prompting and belief augmentation using iterative feedback loops. This framework utilizes an automated red teaming approach to probe the target model, along with a belief augmenter to generate instructions for the target model to improve its robustness to those adversarial probes. Importantly, the adversarial model and the belief generator leverage the feedback from past interactions to improve the effectiveness of the adversarial prompts and beliefs, respectively. In our experiments, we demonstrate that such a framework can reduce toxic content generation both in dynamic cases where an adversary directly interacts with a target model and static cases where we use a static benchmark dataset to evaluate our model.
On the steerability of large language models toward data-driven personas
Li, Junyi, Mehrabi, Ninareh, Peris, Charith, Goyal, Palash, Chang, Kai-Wei, Galstyan, Aram, Zemel, Richard, Gupta, Rahul
The recent surge in Large Language Model (LLM) related applications has led to a concurrent escalation in expectations for LLMs to accommodate a myriad of personas and encompass a broad spectrum of perspectives. An important first step towards addressing this demand is to align language models with specific personas, be it groups of users or individuals. Towards this goal, we first present a new conceptualization of a persona. Moving beyond the traditional reliance on demographics like age, gender, or political party affiliation, we introduce a data-driven persona definition methodology built on collaborative-filtering. In this methodology, users are embedded into a continuous vector space based on their opinions and clustered into cohorts that manifest coherent views across specific inquiries. This methodology allows for a more nuanced understanding of different latent social groups present in the overall population (as opposed to simply using demographic groups) and enhances the applicability of model steerability. Finally, we present an efficient method to steer LLMs towards a particular persona. We learn a soft-prompting model to map the continuous representation of users into sequences of virtual tokens which, when prepended to the LLM input, enables the LLM to produce responses aligned with a given user. Our results show that our steerability algorithm is superior in performance compared to a collection of baselines.
Coordinated Replay Sample Selection for Continual Federated Learning
Good, Jack, Majmudar, Jimit, Dupuy, Christophe, Wang, Jixuan, Peris, Charith, Chung, Clement, Zemel, Richard, Gupta, Rahul
Continual Federated Learning (CFL) combines Federated Learning (FL), the decentralized learning of a central model on a number of client devices that may not communicate their data, and Continual Learning (CL), the learning of a model from a continual stream of data without keeping the entire history. In CL, the main challenge is \textit{forgetting} what was learned from past data. While replay-based algorithms that keep a small pool of past training data are effective to reduce forgetting, only simple replay sample selection strategies have been applied to CFL in prior work, and no previous work has explored coordination among clients for better sample selection. To bridge this gap, we adapt a replay sample selection objective based on loss gradient diversity to CFL and propose a new relaxation-based selection of samples to optimize the objective. Next, we propose a practical algorithm to coordinate gradient-based replay sample selection across clients without communicating private data. We benchmark our coordinated and uncoordinated replay sample selection algorithms against random sampling-based baselines with language models trained on a large scale de-identified real-world text dataset. We show that gradient-based sample selection methods both boost performance and reduce forgetting compared to random sampling methods, with our coordination method showing gains early in the low replay size regime (when the budget for storing past data is small).
Evaluating Large Language Models on Controlled Generation Tasks
Sun, Jiao, Tian, Yufei, Zhou, Wangchunshu, Xu, Nan, Hu, Qian, Gupta, Rahul, Wieting, John Frederick, Peng, Nanyun, Ma, Xuezhe
While recent studies have looked into the abilities of large language models in various benchmark tasks, including question generation, reading comprehension, multilingual and etc, there have been few studies looking into the controllability of large language models on generation tasks. We present an extensive analysis of various benchmarks including a sentence planning benchmark with different granularities. After comparing large language models against state-of-the-start finetuned smaller models, we present a spectrum showing large language models falling behind, are comparable, or exceed the ability of smaller models. We conclude that **large language models struggle at meeting fine-grained hard constraints**.
FLIRT: Feedback Loop In-context Red Teaming
Mehrabi, Ninareh, Goyal, Palash, Dupuy, Christophe, Hu, Qian, Ghosh, Shalini, Zemel, Richard, Chang, Kai-Wei, Galstyan, Aram, Gupta, Rahul
Warning: this paper contains content that may be inappropriate or offensive. As generative models become available for public use in various applications, testing and analyzing vulnerabilities of these models has become a priority. Here we propose an automatic red teaming framework that evaluates a given model and exposes its vulnerabilities against unsafe and inappropriate content generation. Our framework uses in-context learning in a feedback loop to red team models and trigger them into unsafe content generation. We propose different in-context attack strategies to automatically learn effective and diverse adversarial prompts for text-to-image models. Our experiments demonstrate that compared to baseline approaches, our proposed strategy is significantly more effective in exposing vulnerabilities in Stable Diffusion (SD) model, even when the latter is enhanced with safety features. Furthermore, we demonstrate that the proposed framework is effective for red teaming text-to-text models, resulting in significantly higher toxic response generation rate compared to previously reported numbers.
FedMultimodal: A Benchmark For Multimodal Federated Learning
Feng, Tiantian, Bose, Digbalay, Zhang, Tuo, Hebbar, Rajat, Ramakrishna, Anil, Gupta, Rahul, Zhang, Mi, Avestimehr, Salman, Narayanan, Shrikanth
Over the past few years, Federated Learning (FL) has become an emerging machine learning technique to tackle data privacy challenges through collaborative training. In the Federated Learning algorithm, the clients submit a locally trained model, and the server aggregates these parameters until convergence. Despite significant efforts that have been made to FL in fields like computer vision, audio, and natural language processing, the FL applications utilizing multimodal data streams remain largely unexplored. It is known that multimodal learning has broad real-world applications in emotion recognition, healthcare, multimedia, and social media, while user privacy persists as a critical concern. Specifically, there are no existing FL benchmarks targeting multimodal applications or related tasks. In order to facilitate the research in multimodal FL, we introduce FedMultimodal, the first FL benchmark for multimodal learning covering five representative multimodal applications from ten commonly used datasets with a total of eight unique modalities. FedMultimodal offers a systematic FL pipeline, enabling end-to-end modeling framework ranging from data partition and feature extraction to FL benchmark algorithms and model evaluation. Unlike existing FL benchmarks, FedMultimodal provides a standardized approach to assess the robustness of FL against three common data corruptions in real-life multimodal applications: missing modalities, missing labels, and erroneous labels. We hope that FedMultimodal can accelerate numerous future research directions, including designing multimodal FL algorithms toward extreme data heterogeneity, robustness multimodal FL, and efficient multimodal FL. The datasets and benchmark results can be accessed at: https://github.com/usc-sail/fed-multimodal.
"I'm fully who I am": Towards Centering Transgender and Non-Binary Voices to Measure Biases in Open Language Generation
Ovalle, Anaelia, Goyal, Palash, Dhamala, Jwala, Jaggers, Zachary, Chang, Kai-Wei, Galstyan, Aram, Zemel, Richard, Gupta, Rahul
Transgender and non-binary (TGNB) individuals disproportionately experience discrimination and exclusion from daily life. Given the recent popularity and adoption of language generation technologies, the potential to further marginalize this population only grows. Although a multitude of NLP fairness literature focuses on illuminating and addressing gender biases, assessing gender harms for TGNB identities requires understanding how such identities uniquely interact with societal gender norms and how they differ from gender binary-centric perspectives. Such measurement frameworks inherently require centering TGNB voices to help guide the alignment between gender-inclusive NLP and whom they are intended to serve. Towards this goal, we ground our work in the TGNB community and existing interdisciplinary literature to assess how the social reality surrounding experienced marginalization of TGNB persons contributes to and persists within Open Language Generation (OLG). This social knowledge serves as a guide for evaluating popular large language models (LLMs) on two key aspects: (1) misgendering and (2) harmful responses to gender disclosure. To do this, we introduce TANGO, a dataset of template-based real-world text curated from a TGNB-oriented community. We discover a dominance of binary gender norms reflected by the models; LLMs least misgendered subjects in generated text when triggered by prompts whose subjects used binary pronouns. Meanwhile, misgendering was most prevalent when triggering generation with singular they and neopronouns. When prompted with gender disclosures, TGNB disclosure generated the most stigmatizing language and scored most toxic, on average. Our findings warrant further research on how TGNB harms manifest in LLMs and serve as a broader case study toward concretely grounding the design of gender-inclusive AI in community voices and interdisciplinary literature.
Multi-VALUE: A Framework for Cross-Dialectal English NLP
Ziems, Caleb, Held, William, Yang, Jingfeng, Dhamala, Jwala, Gupta, Rahul, Yang, Diyi
Dialect differences caused by regional, social, and economic factors cause performance discrepancies for many groups of language technology users. Inclusive and equitable language technology must critically be dialect invariant, meaning that performance remains constant over dialectal shifts. Current systems often fall short of this ideal since they are designed and tested on a single dialect: Standard American English (SAE). We introduce a suite of resources for evaluating and achieving English dialect invariance. The resource is called Multi-VALUE, a controllable rule-based translation system spanning 50 English dialects and 189 unique linguistic features. Multi-VALUE maps SAE to synthetic forms of each dialect. First, we use this system to stress tests question answering, machine translation, and semantic parsing. Stress tests reveal significant performance disparities for leading models on non-standard dialects. Second, we use this system as a data augmentation technique to improve the dialect robustness of existing systems. Finally, we partner with native speakers of Chicano and Indian English to release new gold-standard variants of the popular CoQA task. To execute the transformation code, run model checkpoints, and download both synthetic and gold-standard dialectal benchmark datasets, see http://value-nlp.org.
Controlling the Extraction of Memorized Data from Large Language Models via Prompt-Tuning
Ozdayi, Mustafa Safa, Peris, Charith, FitzGerald, Jack, Dupuy, Christophe, Majmudar, Jimit, Khan, Haidar, Parikh, Rahil, Gupta, Rahul
Large Language Models (LLMs) are known to memorize significant portions of their training data. Parts of this memorized content have been shown to be extractable by simply querying the model, which poses a privacy risk. We present a novel approach which uses prompt-tuning to control the extraction rates of memorized content in LLMs. We present two prompt training strategies to increase and decrease extraction rates, which correspond to an attack and a defense, respectively. We demonstrate the effectiveness of our techniques by using models from the GPT-Neo family on a public benchmark. For the 1.3B parameter GPT-Neo model, our attack yields a 9.3 percentage point increase in extraction rate compared to our baseline. Our defense can be tuned to achieve different privacy-utility trade-offs by a user-specified hyperparameter. We achieve an extraction rate reduction of up to 97.7% relative to our baseline, with a perplexity increase of 16.9%.
MUTANT: A Multi-sentential Code-mixed Hinglish Dataset
Gupta, Rahul, Srivastava, Vivek, Singh, Mayank
The multi-sentential long sequence textual data unfolds several interesting research directions pertaining to natural language processing and generation. Though we observe several high-quality long-sequence datasets for English and other monolingual languages, there is no significant effort in building such resources for code-mixed languages such as Hinglish (code-mixing of Hindi-English). In this paper, we propose a novel task of identifying multi-sentential code-mixed text (MCT) from multilingual articles. As a use case, we leverage multilingual articles from two different data sources and build a first-of-its-kind multi-sentential code-mixed Hinglish dataset i.e., MUTANT. We propose a token-level language-aware pipeline and extend the existing metrics measuring the degree of codemixing Figure 1: Example MCT and the corresponding article's to a multi-sentential framework and title form two multilingual data sources: (A) automatically identify MCT in the multilingual Dainik Jagran news article and (B) Man-ki-baat speech articles. The MUTANT dataset comprises transcript. We color code the tokens as: English, Hindi, 67k articles with 85k identified Hinglish and language independent.