Goto

Collaborating Authors

 Gupta, Piyush


Graph-Grounded LLMs: Leveraging Graphical Function Calling to Minimize LLM Hallucinations

arXiv.org Artificial Intelligence

The adoption of Large Language Models (LLMs) is rapidly expanding across various tasks that involve inherent graphical structures. Graphs are integral to a wide range of applications, including motion planning for autonomous vehicles, social networks, scene understanding, and knowledge graphs. Many problems, even those not initially perceived as graph-based, can be effectively addressed through graph theory. However, when applied to these tasks, LLMs often encounter challenges, such as hallucinations and mathematical inaccuracies. To overcome these limitations, we propose Graph-Grounded LLMs, a system that improves LLM performance on graph-related tasks by integrating a graph library through function calls. By grounding LLMs in this manner, we demonstrate significant reductions in hallucinations and improved mathematical accuracy in solving graph-based problems, as evidenced by the performance on the NLGraph benchmark. Finally, we showcase a disaster rescue application where the Graph-Grounded LLM acts as a decision-support system.


GFlowVLM: Enhancing Multi-step Reasoning in Vision-Language Models with Generative Flow Networks

arXiv.org Artificial Intelligence

Vision-Language Models (VLMs) have recently shown promising advancements in sequential decision-making tasks through task-specific fine-tuning. However, common fine-tuning methods, such as Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) techniques like Proximal Policy Optimization (PPO), present notable limitations: SFT assumes Independent and Identically Distributed (IID) data, while PPO focuses on maximizing cumulative rewards. These limitations often restrict solution diversity and hinder generalization in multi-step reasoning tasks. To address these challenges, we introduce a novel framework, GFlowVLM, a framework that fine-tune VLMs using Generative Flow Networks (GFlowNets) to promote generation of diverse solutions for complex reasoning tasks. GFlowVLM models the environment as a non-Markovian decision process, allowing it to capture long-term dependencies essential for real-world applications. It takes observations and task descriptions as inputs to prompt chain-of-thought (CoT) reasoning which subsequently guides action selection. We use task based rewards to fine-tune VLM with GFlowNets. This approach enables VLMs to outperform prior fine-tuning methods, including SFT and RL. Empirical results demonstrate the effectiveness of GFlowVLM on complex tasks such as card games (NumberLine, BlackJack) and embodied planning tasks (ALFWorld), showing enhanced training efficiency, solution diversity, and stronger generalization capabilities across both in-distribution and out-of-distribution scenarios.


Generalized Mission Planning for Heterogeneous Multi-Robot Teams via LLM-constructed Hierarchical Trees

arXiv.org Artificial Intelligence

We present a novel mission-planning strategy for heterogeneous multi-robot teams, taking into account the specific constraints and capabilities of each robot. Our approach employs hierarchical trees to systematically break down complex missions into manageable sub-tasks. We develop specialized APIs and tools, which are utilized by Large Language Models (LLMs) to efficiently construct these hierarchical trees. Once the hierarchical tree is generated, it is further decomposed to create optimized schedules for each robot, ensuring adherence to their individual constraints and capabilities. We demonstrate the effectiveness of our framework through detailed examples covering a wide range of missions, showcasing its flexibility and scalability.


Towards Scalable & Efficient Interaction-Aware Planning in Autonomous Vehicles using Knowledge Distillation

arXiv.org Artificial Intelligence

Real-world driving involves intricate interactions among vehicles navigating through dense traffic scenarios. Recent research focuses on enhancing the interaction awareness of autonomous vehicles to leverage these interactions in decision-making. These interaction-aware planners rely on neural-network-based prediction models to capture inter-vehicle interactions, aiming to integrate these predictions with traditional control techniques such as Model Predictive Control. However, this integration of deep learning-based models with traditional control paradigms often results in computationally demanding optimization problems, relying on heuristic methods. This study introduces a principled and efficient method for combining deep learning with constrained optimization, employing knowledge distillation to train smaller and more efficient networks, thereby mitigating complexity. We demonstrate that these refined networks maintain the problem-solving efficacy of larger models while significantly accelerating optimization. Specifically, in the domain of interaction-aware trajectory planning for autonomous vehicles, we illustrate that training a smaller prediction network using knowledge distillation speeds up optimization without sacrificing accuracy.


SARC: Soft Actor Retrospective Critic

arXiv.org Artificial Intelligence

The two-time scale nature of SAC, which is an actor-critic algorithm, is characterised by the fact that the critic estimate has not converged for the actor at any given time, but since the critic learns faster than the actor, it ensures eventual consistency between the two. Various strategies have been introduced in literature to learn better gradient estimates to help achieve better convergence. Since gradient estimates depend upon the critic, we posit that improving the critic can provide a better gradient estimate for the actor at each time. Utilizing this, we propose Soft Actor Retrospective Critic (SARC), where we augment the SAC critic loss with another loss term - retrospective loss - leading to faster critic convergence and consequently, better policy gradient estimates for the actor. An existing implementation of SAC can be easily adapted to SARC with minimal modifications. Through extensive experimentation and analysis, we show that SARC provides consistent improvement over SAC on benchmark environments.


Interaction-Aware Trajectory Planning for Autonomous Vehicles with Analytic Integration of Neural Networks into Model Predictive Control

arXiv.org Artificial Intelligence

Autonomous vehicles (AVs) must share the driving space with other drivers and often employ conservative motion planning strategies to ensure safety. These conservative strategies can negatively impact AV's performance and significantly slow traffic throughput. Therefore, to avoid conservatism, we design an interaction-aware motion planner for the ego vehicle (AV) that interacts with surrounding vehicles to perform complex maneuvers in a locally optimal manner. Our planner uses a neural network-based interactive trajectory predictor and analytically integrates it with model predictive control (MPC). We solve the MPC optimization using the alternating direction method of multipliers (ADMM) and prove the algorithm's convergence. We provide an empirical study and compare our method with a baseline heuristic method.


Deterministic Sequencing of Exploration and Exploitation for Reinforcement Learning

arXiv.org Artificial Intelligence

We propose Deterministic Sequencing of Exploration and Exploitation (DSEE) algorithm with interleaving exploration and exploitation epochs for model-based RL problems that aim to simultaneously learn the system model, i.e., a Markov decision process (MDP), and the associated optimal policy. During exploration, DSEE explores the environment and updates the estimates for expected reward and transition probabilities. During exploitation, the latest estimates of the expected reward and transition probabilities are used to obtain a robust policy with high probability. We design the lengths of the exploration and exploitation epochs such that the cumulative regret grows as a sub-linear function of time.


MixBoost: Synthetic Oversampling with Boosted Mixup for Handling Extreme Imbalance

arXiv.org Machine Learning

Training a classification model on a dataset where the instances of one class outnumber those of the other class is a challenging problem. Such imbalanced datasets are standard in real-world situations such as fraud detection, medical diagnosis, and computational advertising. We propose an iterative data augmentation method, MixBoost, which intelligently selects (Boost) and then combines (Mix) instances from the majority and minority classes to generate synthetic hybrid instances that have characteristics of both classes. We evaluate MixBoost on 20 benchmark datasets, show that it outperforms existing approaches, and test its efficacy through significance testing. We also present ablation studies to analyze the impact of the different components of MixBoost.


MAGIX: Model Agnostic Globally Interpretable Explanations

arXiv.org Artificial Intelligence

Explaining the behavior of a black box machine learning model at the instance level is useful for building trust. However, it is also important to understand how the model behaves globally. Such an understanding provides insight into both the data on which the model was trained and the patterns that it learned. We present here an approach that learns if-then rules to globally explain the behavior of black box machine learning models that have been used to solve classification problems. The approach works by first extracting conditions that were important at the instance level and then evolving rules through a genetic algorithm with an appropriate fitness function. Collectively, these rules represent the patterns followed by the model for decisioning and are useful for understanding its behavior. We demonstrate the validity and usefulness of the approach by interpreting black box models created using publicly available data sets as well as a private digital marketing data set.