Gupta, Pankaj
SEPSIS: I Can Catch Your Lies -- A New Paradigm for Deception Detection
Rani, Anku, Dalal, Dwip, Gautam, Shreya, Gupta, Pankaj, Jain, Vinija, Chadha, Aman, Sheth, Amit, Das, Amitava
Deception is the intentional practice of twisting information. It is a nuanced societal practice deeply intertwined with human societal evolution, characterized by a multitude of facets. This research explores the problem of deception through the lens of psychology, employing a framework that categorizes deception into three forms: lies of omission, lies of commission, and lies of influence. The primary focus of this study is specifically on investigating only lies of omission. We propose a novel framework for deception detection leveraging NLP techniques. We curated an annotated dataset of 876,784 samples by amalgamating a popular large-scale fake news dataset and scraped news headlines from the Twitter handle of Times of India, a well-known Indian news media house. Each sample has been labeled with four layers, namely: (i) the type of omission (speculation, bias, distortion, sounds factual, and opinion), (ii) colors of lies(black, white, etc), and (iii) the intention of such lies (to influence, etc) (iv) topic of lies (political, educational, religious, etc). We present a novel multi-task learning pipeline that leverages the dataless merging of fine-tuned language models to address the deception detection task mentioned earlier. Our proposed model achieved an F1 score of 0.87, demonstrating strong performance across all layers including the type, color, intent, and topic aspects of deceptive content. Finally, our research explores the relationship between lies of omission and propaganda techniques. To accomplish this, we conducted an in-depth analysis, uncovering compelling findings. For instance, our analysis revealed a significant correlation between loaded language and opinion, shedding light on their interconnectedness. To encourage further research in this field, we will be making the models and dataset available with the MIT License, making it favorable for open-source research.
Neural Topic Modeling with Continual Lifelong Learning
Gupta, Pankaj, Chaudhary, Yatin, Runkler, Thomas, Schütze, Hinrich
Lifelong learning has recently attracted attention in building machine learning systems that continually accumulate and transfer knowledge to help future learning. Unsupervised topic modeling has been popularly used to discover topics from document collections. However, the application of topic modeling is challenging due to data sparsity, e.g., in a small collection of (short) documents and thus, generate incoherent topics and sub-optimal document representations. To address the problem, we propose a lifelong learning framework for neural topic modeling that can continuously process streams of document collections, accumulate topics and guide future topic modeling tasks by knowledge transfer from several sources to better deal with the sparse data. In the lifelong process, we particularly investigate jointly: (1) sharing generative homologies (latent topics) over lifetime to transfer prior knowledge, and (2) minimizing catastrophic forgetting to retain the past learning via novel selective data augmentation, co-training and topic regularization approaches. Given a stream of document collections, we apply the proposed Lifelong Neural Topic Modeling (LNTM) framework in modeling three sparse document collections as future tasks and demonstrate improved performance quantified by perplexity, topic coherence and information retrieval task.
Federated Continual Learning for Text Classification via Selective Inter-client Transfer
Chaudhary, Yatin, Rai, Pranav, Schubert, Matthias, Schütze, Hinrich, Gupta, Pankaj
In this work, we combine the two paradigms: Federated Learning (FL) and Continual Learning (CL) for text classification task in cloud-edge continuum. The objective of Federated Continual Learning (FCL) is to improve deep learning models over life time at each client by (relevant and efficient) knowledge transfer without sharing data. Here, we address challenges in minimizing inter-client interference while knowledge sharing due to heterogeneous tasks across clients in FCL setup. In doing so, we propose a novel framework, Federated Selective Inter-client Transfer (FedSeIT) which selectively combines model parameters of foreign clients. To further maximize knowledge transfer, we assess domain overlap and select informative tasks from the sequence of historical tasks at each foreign client while preserving privacy. Evaluating against the baselines, we show improved performance, a gain of (average) 12.4\% in text classification over a sequence of tasks using five datasets from diverse domains. To the best of our knowledge, this is the first work that applies FCL to NLP.
Adversarial Adaptation for French Named Entity Recognition
Choudhry, Arjun, Khatri, Inder, Gupta, Pankaj, Gupta, Aaryan, Nicol, Maxime, Meurs, Marie-Jean, Vishwakarma, Dinesh Kumar
Named Entity Recognition (NER) is the task of identifying and classifying named entities in large-scale texts into predefined classes. NER in French and other relatively limited-resource languages cannot always benefit from approaches proposed for languages like English due to a dearth of large, robust datasets. In this paper, we present our work that aims to mitigate the effects of this dearth of large, labeled datasets. We propose a Transformer-based NER approach for French, using adversarial adaptation to similar domain or general corpora to improve feature extraction and enable better generalization. Our approach allows learning better features using large-scale unlabeled corpora from the same domain or mixed domains to introduce more variations during training and reduce overfitting. Experimental results on three labeled datasets show that our adaptation framework outperforms the corresponding non-adaptive models for various combinations of Transformer models, source datasets, and target corpora. We also show that adversarial adaptation to large-scale unlabeled corpora can help mitigate the performance dip incurred on using Transformer models pre-trained on smaller corpora.
Transformer-Based Named Entity Recognition for French Using Adversarial Adaptation to Similar Domain Corpora
Choudhry, Arjun, Gupta, Pankaj, Khatri, Inder, Gupta, Aaryan, Nicol, Maxime, Meurs, Marie-Jean, Vishwakarma, Dinesh Kumar
Named Entity Recognition (NER) is an information extraction task where specific entities are extracted from unstructured text and labelled into predefined classes. While NER models for high-resource languages like English have seen notable performance gains due to improvements in model architectures and availability of large datasets, limited-resource languages like French still face a dearth of openly available, large, labelled datasets. Recent research works use adversarial adaptation frameworks for adapting NER models from high-resource domains to low-resource domains. These approaches have been used for high-resource languages, where robust language models are available. We utilize adversarial adaptation to enable models to learn better, generalized features by adapting them to large, unlabelled corpora for better performance on source test set. We propose a Transformer-based NER approach for French using adversarial adaptation to counter the lack of large, labelled NER datasets in French. We train transformer-based NER models on labelled source datasets and use larger corpora from similar or mixed domains as target sets for improved feature learning. Our proposed approach helps outsource wider domain and general feature knowledge from easily-available large, unlabelled corpora. While we limit our evaluation to French datasets and corpora, our approach can be applied to other languages too.
An Emotion-guided Approach to Domain Adaptive Fake News Detection using Adversarial Learning
Chakraborty, Arkajyoti, Khatri, Inder, Choudhry, Arjun, Gupta, Pankaj, Vishwakarma, Dinesh Kumar, Prasad, Mukesh
Recent works on fake news detection have shown the efficacy of using emotions as a feature for improved performance. However, the cross-domain impact of emotion-guided features for fake news detection still remains an open problem. In this work, we propose an emotion-guided, domain-adaptive, multi-task approach for cross-domain fake news detection, proving the efficacy of emotion-guided models in cross-domain settings for various datasets.
Multi-source Neural Topic Modeling in Multi-view Embedding Spaces
Gupta, Pankaj, Chaudhary, Yatin, Schütze, Hinrich
Though word embeddings and topics are complementary representations, several past works have only used pretrained word embeddings in (neural) topic modeling to address data sparsity in short-text or small collection of documents. This work presents a novel neural topic modeling framework using multi-view embedding spaces: (1) pretrained topic-embeddings, and (2) pretrained word-embeddings (context insensitive from Glove and context-sensitive from BERT models) jointly from one or many sources to improve topic quality and better deal with polysemy. In doing so, we first build respective pools of pretrained topic (i.e., TopicPool) and word embeddings (i.e., WordPool). We then identify one or more relevant source domain(s) and transfer knowledge to guide meaningful learning in the sparse target domain. Within neural topic modeling, we quantify the quality of topics and document representations via generalization (perplexity), interpretability (topic coherence) and information retrieval (IR) using short-text, long-text, small and large document collections from news and medical domains. Introducing the multi-source multi-view embedding spaces, we have shown state-of-the-art neural topic modeling using 6 source (high-resource) and 5 target (low-resource) corpora.
Explainable and Discourse Topic-aware Neural Language Understanding
Chaudhary, Yatin, Schütze, Hinrich, Gupta, Pankaj
Marrying topic models and language models exposes language understanding to a broader source of document-level context beyond sentences via topics. While introducing topical semantics in language models, existing approaches incorporate latent document topic proportions and ignore topical discourse in sentences of the document. This work extends the line of research by additionally introducing an explainable topic representation in language understanding, obtained from a set of key terms correspondingly for each latent topic of the proportion. Moreover, we retain sentence-topic associations along with document-topic association by modeling topical discourse for every sentence in the document. We present a novel neural composite language model that exploits both the latent and explainable topics along with topical discourse at sentence-level in a joint learning framework of topic and language models. Experiments over a range of tasks such as language modeling, word sense disambiguation, document classification, retrieval and text generation demonstrate ability of the proposed model in improving language understanding.
BioNLP-OST 2019 RDoC Tasks: Multi-grain Neural Relevance Ranking Using Topics and Attention Based Query-Document-Sentence Interactions
Chaudhary, Yatin, Gupta, Pankaj, Schütze, Hinrich
This paper presents our system details and results of participation in the RDoC Tasks of BioNLP-OST 2019. Research Domain Criteria (RDoC) construct is a multi-dimensional and broad framework to describe mental health disorders by combining knowledge from genomics to behaviour. Non-availability of RDoC labelled dataset and tedious labelling process hinders the use of RDoC framework to reach its full potential in Biomedical research community and Healthcare industry. Therefore, Task-1 aims at retrieval and ranking of PubMed abstracts relevant to a given RDoC construct and Task-2 aims at extraction of the most relevant sentence from a given PubMed abstract. We investigate (1) attention based supervised neural topic model and SVM for retrieval and ranking of PubMed abstracts and, further utilize BM25 and other relevance measures for re-ranking, (2) supervised and unsupervised sentence ranking models utilizing multi-view representations comprising of query-aware attention-based sentence representation (QAR), bag-of-words (BoW) and TF-IDF. Our best systems achieved 1st rank and scored 0.86 mean average precision (mAP) and 0.58 macro average accuracy (MAA) in Task-1 and Task-2 respectively.
textTOvec: Deep Contextualized Neural Autoregressive Topic Models of Language with Distributed Compositional Prior
Gupta, Pankaj, Chaudhary, Yatin, Buettner, Florian, Schütze, Hinrich
We address two challenges of probabilistic topic modelling in order to better estimate the probability of a word in a given context, i.e., P(word|context): (1) No Language Structure in Context: Probabilistic topic models ignore word order by summarizing a given context as a "bag-of-word" and consequently the semantics of words in the context is lost. The LSTM-LM learns a vector-space representation of each word by accounting for word order in local collocation patterns and models complex characteristics of language (e.g., syntax and semantics), while the TM simultaneously learns a latent representation from the entire document and discovers the underlying thematic structure. We unite two complementary paradigms of learning the meaning of word occurrences by combining a TM (e.g., DocNADE) and a LM in a unified probabilistic framework, named as ctx-DocNADE. (2) Limited Context and/or Smaller training corpus of documents: In settings with a small number of word occurrences (i.e., lack of context) in short text or data sparsity in a corpus of few documents, the application of TMs is challenging. We address this challenge by incorporating external knowledge into neural autoregressive topic models via a language modelling approach: we use word embeddings as input of a LSTM-LM with the aim to improve the word-topic mapping on a smaller and/or short-text corpus. The proposed DocNADE extension is named as ctx-DocNADEe. We present novel neural autoregressive topic model variants coupled with neural LMs and embeddings priors that consistently outperform state-of-the-art generative TMs in terms of generalization (perplexity), interpretability (topic coherence) and applicability (retrieval and classification) over 6 long-text and 8 short-text datasets from diverse domains.