Gupta, Nikhil
IndicEval-XL: Bridging Linguistic Diversity in Code Generation Across Indic Languages
Singh, Ujjwal, Sharma, Aditi, Gupta, Nikhil, Deepakshi, null, Jha, Vivek Kumar
Large Language Models (LLMs) have demonstrated remarkable capabilities in code generation from natural language prompts, revolutionizing software development workflows. As we advance towards agent-based development paradigms, these models form the cornerstone of next-generation software development lifecycles. However, current benchmarks for evaluating multilingual code generation capabilities are predominantly English-centric, limiting their applicability across the global developer community. To address this limitation, we present IndicEval-XL, a comprehensive benchmark for code generation that incorporates 6 major Indic languages, collectively spoken by approximately 14\% of the world's population. Our benchmark bridges these languages with 12 programming languages, creating a robust evaluation framework. This work is particularly significant given India's representation of one-eighth of the global population and the crucial role Indic languages play in Indian society. IndicEval-XL represents a significant step toward expanding the linguistic diversity in code generation systems and evaluation frameworks. By developing resources that support multiple languages, we aim to make AI-powered development tools more inclusive and accessible to developers of various linguistic backgrounds. To facilitate further research and development in this direction, we make our dataset and evaluation benchmark publicly available at https://github.com/telekom/IndicEval-XL
Hierarchical Pointer Memory Network for Task Oriented Dialogue
Raghu, Dinesh, Gupta, Nikhil, Mausam, null
We observe that end-to-end memory networks (MN) trained for task-oriented dialogue, such as for recommending restaurants to a user, suffer from an out-of-vocabulary (OOV) problem -- the entities returned by the Knowledge Base (KB) may not be seen by the network at training time, making it impossible for it to use them in dialogue. We propose a Hierarchical Pointer Memory Network (HyP-MN), in which the next word may be generated from the decode vocabulary or copied from a hierarchical memory maintaining KB results and previous utterances. Evaluating over the dialog bAbI tasks, we find that HyP-MN drastically outperforms MN obtaining 12% overall accuracy gains. Further analysis reveals that MN fails completely in recommending any relevant restaurant, whereas HyP-MN recommends the best next restaurant 80% of the time.