Goto

Collaborating Authors

 Gupta, Ashutosh


Learning Decentralized Multi-Biped Control for Payload Transport

arXiv.org Artificial Intelligence

Payload transport over flat terrain via multi-wheel robot carriers is well-understood, highly effective, and configurable. In this paper, our goal is to provide similar effectiveness and configurability for transport over rough terrain that is more suitable for legs rather than wheels. For this purpose, we consider multi-biped robot carriers, where wheels are replaced by multiple bipedal robots attached to the carrier. Our main contribution is to design a decentralized controller for such systems that can be effectively applied to varying numbers and configurations of rigidly attached bipedal robots without retraining. We present a reinforcement learning approach for training the controller in simulation that supports transfer to the real world. Our experiments in simulation provide quantitative metrics showing the effectiveness of the approach over a wide variety of simulated transport scenarios. In addition, we demonstrate the controller in the real-world for systems composed of two and three Cassie robots. To our knowledge, this is the first example of a scalable multi-biped payload transport system.


Integrating Explanations in Learning LTL Specifications from Demonstrations

arXiv.org Artificial Intelligence

This paper investigates whether recent advances in Large Language Models (LLMs) can assist in translating human explanations into a format that can robustly support learning Linear Temporal Logic (LTL) from demonstrations. Both LLMs and optimization-based methods can extract LTL specifications from demonstrations; however, they have distinct limitations. LLMs can quickly generate solutions and incorporate human explanations, but their lack of consistency and reliability hampers their applicability in safety-critical domains. On the other hand, optimization-based methods do provide formal guarantees but cannot process natural language explanations and face scalability challenges. We present a principled approach to combining LLMs and optimization-based methods to faithfully translate human explanations and demonstrations into LTL specifications. We have implemented a tool called Janaka based on our approach. Our experiments demonstrate the effectiveness of combining explanations with demonstrations in learning LTL specifications through several case studies.


SIRAN: Sinkhorn Distance Regularized Adversarial Network for DEM Super-resolution using Discriminative Spatial Self-attention

arXiv.org Artificial Intelligence

Digital Elevation Model (DEM) is an essential aspect in the remote sensing domain to analyze and explore different applications related to surface elevation information. In this study, we intend to address the generation of high-resolution DEMs using high-resolution multi-spectral (MX) satellite imagery by incorporating adversarial learning. To promptly regulate this process, we utilize the notion of polarized self-attention of discriminator spatial maps as well as introduce a Densely connected Multi-Residual Block (DMRB) module to assist in efficient gradient flow. Further, we present an objective function related to optimizing Sinkhorn distance with traditional GAN to improve the stability of adversarial learning. In this regard, we provide both theoretical and empirical substantiation of better performance in terms of vanishing gradient issues and numerical convergence. We demonstrate both qualitative and quantitative outcomes with available state-of-the-art methods. Based on our experiments on DEM datasets of Shuttle Radar Topographic Mission (SRTM) and Cartosat-1, we show that the proposed model performs preferably against other learning-based state-of-the-art methods. We also generate and visualize several high-resolution DEMs covering terrains with diverse signatures to show the performance of our model.


iPAL: A Machine Learning Based Smart Healthcare Framework For Automatic Diagnosis Of Attention Deficit/Hyperactivity Disorder (ADHD)

arXiv.org Artificial Intelligence

ADHD is a prevalent disorder among the younger population. Standard evaluation techniques currently use evaluation forms, interviews with the patient, and more. However, its symptoms are similar to those of many other disorders like depression, conduct disorder, and oppositional defiant disorder, and these current diagnosis techniques are not very effective. Thus, a sophisticated computing model holds the potential to provide a promising diagnosis solution to this problem. This work attempts to explore methods to diagnose ADHD using combinations of multiple established machine learning techniques like neural networks and SVM models on the ADHD200 dataset and explore the field of neuroscience. In this work, multiclass classification is performed on phenotypic data using an SVM model. The better results have been analyzed on the phenotypic data compared to other supervised learning techniques like Logistic regression, KNN, AdaBoost, etc. In addition, neural networks have been implemented on functional connectivity from the MRI data of a sample of 40 subjects provided to achieve high accuracy without prior knowledge of neuroscience. It is combined with the phenotypic classifier using the ensemble technique to get a binary classifier. It is further trained and tested on 400 out of 824 subjects from the ADHD200 data set and achieved an accuracy of 92.5% for binary classification The training and testing accuracy has been achieved upto 99% using ensemble classifier.