Gupta, Archit
Edge Attention Module for Object Classification
Roy, Santanu, Suresh, Ashvath, Gupta, Archit
A novel ``edge attention-based Convolutional Neural Network (CNN)'' is proposed in this research for object classification task. With the advent of advanced computing technology, CNN models have achieved to remarkable success, particularly in computer vision applications. Nevertheless, the efficacy of the conventional CNN is often hindered due to class imbalance and inter-class similarity problems, which are particularly prominent in the computer vision field. In this research, we introduce for the first time an ``Edge Attention Module (EAM)'' consisting of a Max-Min pooling layer, followed by convolutional layers. This Max-Min pooling is entirely a novel pooling technique, specifically designed to capture only the edge information that is crucial for any object classification task. Therefore, by integrating this novel pooling technique into the attention module, the CNN network inherently prioritizes on essential edge features, thereby boosting the accuracy and F1-score of the model significantly. We have implemented our proposed EAM or 2EAMs on several standard pre-trained CNN models for Caltech-101, Caltech-256, CIFAR-100 and Tiny ImageNet-200 datasets. The extensive experiments reveal that our proposed framework (that is, EAM with CNN and 2EAMs with CNN), outperforms all pre-trained CNN models as well as recent trend models ``Pooling-based Vision Transformer (PiT)'', ``Convolutional Block Attention Module (CBAM)'', and ConvNext, by substantial margins. We have achieved the accuracy of 95.5% and 86% by the proposed framework on Caltech-101 and Caltech-256 datasets, respectively. So far, this is the best results on these datasets, to the best of our knowledge.
Cache-Craft: Managing Chunk-Caches for Efficient Retrieval-Augmented Generation
Agarwal, Shubham, Sundaresan, Sai, Mitra, Subrata, Mahapatra, Debabrata, Gupta, Archit, Sharma, Rounak, Kapu, Nirmal Joshua, Yu, Tong, Saini, Shiv
Retrieval-Augmented Generation (RAG) is often used with Large Language Models (LLMs) to infuse domain knowledge or user-specific information. In RAG, given a user query, a retriever extracts chunks of relevant text from a knowledge base. These chunks are sent to an LLM as part of the input prompt. Typically, any given chunk is repeatedly retrieved across user questions. However, currently, for every question, attention-layers in LLMs fully compute the key values (KVs) repeatedly for the input chunks, as state-of-the-art methods cannot reuse KV-caches when chunks appear at arbitrary locations with arbitrary contexts. Naive reuse leads to output quality degradation. This leads to potentially redundant computations on expensive GPUs and increases latency. In this work, we propose Cache-Craft, a system for managing and reusing precomputed KVs corresponding to the text chunks (we call chunk-caches) in RAG-based systems. We present how to identify chunk-caches that are reusable, how to efficiently perform a small fraction of recomputation to fix the cache to maintain output quality, and how to efficiently store and evict chunk-caches in the hardware for maximizing reuse while masking any overheads. With real production workloads as well as synthetic datasets, we show that Cache-Craft reduces redundant computation by 51% over SOTA prefix-caching and 75% over full recomputation. Additionally, with continuous batching on a real production workload, we get a 1.6X speed up in throughput and a 2X reduction in end-to-end response latency over prefix-caching while maintaining quality, for both the LLaMA-3-8B and LLaMA-3-70B models.
A Low-Cost Lane-Following Algorithm for Cyber-Physical Robots
Gupta, Archit, Easwaran, Arvind
Duckiebots are low-cost mobile robots that are widely used in the fields of research and education. Although there are existing self-driving algorithms for the Duckietown platform, they are either too complex or perform too poorly to navigate a multi-lane track. Moreover, it is essential to give memory and computational resources to a Duckiebot so it can perform additional tasks such as out-of-distribution input detection. In order to satisfy these constraints, we built a low-cost autonomous driving algorithm capable of driving on a two-lane track. The algorithm uses traditional computer vision techniques to identify the central lane on the track and obtain the relevant steering angle. The steering is then controlled by a PID controller that smoothens the movement of the Duckiebot. The performance of the algorithm was compared to that of the NeurIPS 2018 AI Driving Olympics (AIDO) finalists, and it outperformed all but one finalists. The two main contributions of our algorithm are its low computational requirements and very quick set-up, with ongoing efforts to make it more reliable.
A Machine Learning Approach to Predicting Single Event Upsets
Gupta, Archit, Eng, Chong Yock, Wee, Deon Lim Meng, Ahmed, Rashna Analia, Sim, See Min
A single event upset (SEU) is a critical soft error that occurs in semiconductor devices on exposure to ionising particles from space environments. SEUs cause bit flips in the memory component of semiconductors. This creates a multitude of safety hazards as stored information becomes less reliable. Currently, SEUs are only detected several hours after their occurrence. CREMER, the model presented in this paper, predicts SEUs in advance using machine learning. CREMER uses only positional data to predict SEU occurrence, making it robust, inexpensive and scalable. Upon implementation, the improved reliability of memory devices will create a digitally safer environment onboard space vehicles.