Goto

Collaborating Authors

 Gupta, Akshay


Building Safe GenAI Applications: An End-to-End Overview of Red Teaming for Large Language Models

arXiv.org Artificial Intelligence

The rapid growth of Large Language Models (LLMs) presents significant privacy, security, and ethical concerns. While much research has proposed methods for defending LLM systems against misuse by malicious actors, researchers have recently complemented these efforts with an offensive approach that involves red teaming, i.e., proactively attacking LLMs with the purpose of identifying their vulnerabilities. This paper provides a concise and practical overview of the LLM red teaming literature, structured so as to describe a multi-component system end-to-end. To motivate red teaming we survey the initial safety needs of some high-profile LLMs, and then dive into the different components of a red teaming system as well as software packages for implementing them. We cover various attack methods, strategies for attack-success evaluation, metrics for assessing experiment outcomes, as well as a host of other considerations. Our survey will be useful for any reader who wants to rapidly obtain a grasp of the major red teaming concepts for their own use in practical applications.


The 2023 Video Similarity Dataset and Challenge

arXiv.org Artificial Intelligence

This work introduces a dataset, benchmark, and challenge for the problem of video copy detection and localization. The problem comprises two distinct but related tasks: determining whether a query video shares content with a reference video ("detection"), and additionally temporally localizing the shared content within each video ("localization"). The benchmark is designed to evaluate methods on these two tasks, and simulates a realistic needle-in-haystack setting, where the majority of both query and reference videos are "distractors" containing no copied content. We propose a metric that reflects both detection and localization accuracy. The associated challenge consists of two corresponding tracks, each with restrictions that reflect real-world settings. We provide implementation code for evaluation and baselines. We also analyze the results and methods of the top submissions to the challenge. The dataset, baseline methods and evaluation code is publicly available and will be discussed at a dedicated CVPR'23 workshop.


Learning Stance Embeddings from Signed Social Graphs

arXiv.org Artificial Intelligence

A key challenge in social network analysis is understanding the position, or stance, of people in the graph on a large set of topics. While past work has modeled (dis)agreement in social networks using signed graphs, these approaches have not modeled agreement patterns across a range of correlated topics. For instance, disagreement on one topic may make disagreement(or agreement) more likely for related topics. We propose the Stance Embeddings Model(SEM), which jointly learns embeddings for each user and topic in signed social graphs with distinct edge types for each topic. By jointly learning user and topic embeddings, SEM is able to perform cold-start topic stance detection, predicting the stance of a user on topics for which we have not observed their engagement. We demonstrate the effectiveness of SEM using two large-scale Twitter signed graph datasets we open-source. One dataset, TwitterSG, labels (dis)agreements using engagements between users via tweets to derive topic-informed, signed edges. The other, BirdwatchSG, leverages community reports on misinformation and misleading content. On TwitterSG and BirdwatchSG, SEM shows a 39% and 26% error reduction respectively against strong baselines.


Privacy-Aware Recommender Systems Challenge on Twitter's Home Timeline

arXiv.org Machine Learning

Recommender systems constitute the core engine of most social network platforms nowadays, aiming to maximize user satisfaction along with other key business objectives. Twitter is no exception. Despite the fact that Twitter data has been extensively used to understand socioeconomic and political phenomena and user behaviour, the implicit feedback provided by users on Tweets through their engagements on the Home Timeline has only been explored to a limited extent. At the same time, there is a lack of large-scale public social network datasets that would enable the scientific community to both benchmark and build more powerful and comprehensive models that tailor content to user interests. By releasing an original dataset of 160 million Tweets along with engagement information, Twitter aims to address exactly that. During this release, special attention is drawn on maintaining compliance with existing privacy laws. Apart from user privacy, this paper touches on the key challenges faced by researchers and professionals striving to predict user engagements. It further describes the key aspects of the RecSys 2020 Challenge that was organized by ACM RecSys in partnership with Twitter using this dataset.


Model Size Reduction Using Frequency Based Double Hashing for Recommender Systems

arXiv.org Machine Learning

Deep Neural Networks (DNNs) with sparse input features have been widely used in recommender systems in industry. These models have large memory requirements and need a huge amount of training data. The large model size usually entails a cost, in the range of millions of dollars, for storage and communication with the inference services. In this paper, we propose a hybrid hashing method to combine frequency hashing and double hashing techniques for model size reduction, without compromising performance. We evaluate the proposed models on two product surfaces. In both cases, experiment results demonstrated that we can reduce the model size by around 90 % while keeping the performance on par with the original baselines.


Viewpoints AI

AAAI Conferences

This article describes a technical approach to movement-based interactions between a human interactor and an intelligent agent based on the theatrical Viewpoints movement framework. The Viewpoints AI system features procedural gesture interpretation using shallow semantics and deep aesthetics analysis from the Viewpoints framework. The installation creates a liminal virtual / real space for the human and AI to interact by the use of digital projection for the AI visualization and shadow play to represent the human. Observations from a recent public demonstration of the system and future directions of work are also discussed.


Viewpoints AI: Demonstration

AAAI Conferences

This article describes a technical approach to movement-based interactions between a human interactor and an intelligent agent based on the theatrical Viewpoints movement framework. The Viewpoints AI system features procedural gesture interpretation using shallow semantics and deep aesthetics analysis from the Viewpoints framework. The installation creates a liminal virtual / real space for the human and AI to interact by the use of digital projection for the AI visualization and shadow play to represent the human. Observations from a recent public demonstration of the system and future directions of work are also discussed.