Gupta, Ajay
Predictive Response Optimization: Using Reinforcement Learning to Fight Online Social Network Abuse
Wilson, Garrett, Goh, Geoffrey, Jiang, Yan, Gupta, Ajay, Wang, Jiaxuan, Freeman, David, Dinuzzo, Francesco
Detecting phishing, spam, fake accounts, data scraping, and other malicious activity in online social networks (OSNs) is a problem that has been studied for well over a decade, with a number of important results. Nearly all existing works on abuse detection have as their goal producing the best possible binary classifier; i.e., one that labels unseen examples as "benign" or "malicious" with high precision and recall. However, no prior published work considers what comes next: what does the service actually do after it detects abuse? In this paper, we argue that detection as described in previous work is not the goal of those who are fighting OSN abuse. Rather, we believe the goal to be selecting actions (e.g., ban the user, block the request, show a CAPTCHA, or "collect more evidence") that optimize a tradeoff between harm caused by abuse and impact on benign users. With this framing, we see that enlarging the set of possible actions allows us to move the Pareto frontier in a way that is unattainable by simply tuning the threshold of a binary classifier. To demonstrate the potential of our approach, we present Predictive Response Optimization (PRO), a system based on reinforcement learning that utilizes available contextual information to predict future abuse and user-experience metrics conditioned on each possible action, and select actions that optimize a multi-dimensional tradeoff between abuse/harm and impact on user experience. We deployed versions of PRO targeted at stopping automated activity on Instagram and Facebook. In both cases our experiments showed that PRO outperforms a baseline classification system, reducing abuse volume by 59% and 4.5% (respectively) with no negative impact to users. We also present several case studies that demonstrate how PRO can quickly and automatically adapt to changes in business constraints, system behavior, and/or adversarial tactics.
Leveraging Explainable AI to Analyze Researchers' Aspect-Based Sentiment about ChatGPT
Lakhanpal, Shilpa, Gupta, Ajay, Agrawal, Rajeev
The groundbreaking invention of ChatGPT has triggered enormous discussion among users across all fields and domains. Among celebration around its various advantages, questions have been raised with regards to its correctness and ethics of its use. Efforts are already underway towards capturing user sentiments around it. But it begs the question as to how the research community is analyzing ChatGPT with regards to various aspects of its usage. It is this sentiment of the researchers that we analyze in our work. Since Aspect-Based Sentiment Analysis has usually only been applied on a few datasets, it gives limited success and that too only on short text data. We propose a methodology that uses Explainable AI to facilitate such analysis on research data. Our technique presents valuable insights into extending the state of the art of Aspect-Based Sentiment Analysis on newer datasets, where such analysis is not hampered by the length of the text data.
Picking Pearl From Seabed: Extracting Artefacts from Noisy Issue Triaging Collaborative Conversations for Hybrid Cloud Services
Azad, Amar Prakash, Ghosh, Supriyo, Gupta, Ajay, Kumar, Harshit, Mohapatra, Prateeti
Site Reliability Engineers (SREs) play a key role in issue identification and resolution. After an issue is reported, SREs come together in a virtual room (collaboration platform) to triage the issue. While doing so, they leave behind a wealth of information which can be used later for triaging similar issues. However, usability of the conversations offer challenges due to them being i) noisy and ii) unlabelled. This paper presents a novel approach for issue artefact extraction from the noisy conversations with minimal labelled data. We propose a combination of unsupervised and supervised model with minimum human intervention that leverages domain knowledge to predict artefacts for a small amount of conversation data and use that for fine-tuning an already pretrained language model for artefact prediction on a large amount of conversation data. Experimental results on our dataset show that the proposed ensemble of unsupervised and supervised model is better than using either one of them individually.
Machine Learning, Big Data, And Smart Buildings: A Comprehensive Survey
Qolomany, Basheer, Al-Fuqaha, Ala, Gupta, Ajay, Benhaddou, Driss, Alwajidi, Safaa, Qadir, Junaid, Fong, Alvis C.
Future buildings will offer new convenience, comfort, and efficiency possibilities to their residents. Changes will occur to the way people live as technology involves into people's lives and information processing is fully integrated into their daily living activities and objects. The future expectation of smart buildings includes making the residents' experience as easy and comfortable as possible. The massive streaming data generated and captured by smart building appliances and devices contains valuable information that needs to be mined to facilitate timely actions and better decision making. Machine learning and big data analytics will undoubtedly play a critical role to enable the delivery of such smart services. In this paper, we survey the area of smart building with a special focus on the role of techniques from machine learning and big data analytics. This survey also reviews the current trends and challenges faced in the development of smart building services.
A Method for the Efficient Design of Boltzmann Machines for Classiffication Problems
Gupta, Ajay, Maass, Wolfgang
A Boltzmann machine ([AHS], [HS], [AK]) is a neural network model in which the units update their states according to a stochastic decision rule. It consists of a set U of units, a set C of unordered pairs of elements of U, and an assignment of connection strengths S: C -- R. A configuration of a Boltzmann machine is a map k: U -- {O, I}.
A Method for the Efficient Design of Boltzmann Machines for Classiffication Problems
Gupta, Ajay, Maass, Wolfgang
A Boltzmann machine ([AHS], [HS], [AK]) is a neural network model in which the units update their states according to a stochastic decision rule. It consists of a set U of units, a set C of unordered pairs of elements of U, and an assignment of connection strengths S: C -- R. A configuration of a Boltzmann machine is a map k: U -- {O, I}.