Not enough data to create a plot.
Try a different view from the menu above.
Gupta, Abhishek
Fighting Uncertainty with Gradients: Offline Reinforcement Learning via Diffusion Score Matching
Suh, H. J. Terry, Chou, Glen, Dai, Hongkai, Yang, Lujie, Gupta, Abhishek, Tedrake, Russ
Gradient-based methods enable efficient search capabilities in high dimensions. However, in order to apply them effectively in offline optimization paradigms such as offline Reinforcement Learning (RL) or Imitation Learning (IL), we require a more careful consideration of how uncertainty estimation interplays with first-order methods that attempt to minimize them. We study smoothed distance to data as an uncertainty metric, and claim that it has two beneficial properties: (i) it allows gradient-based methods that attempt to minimize uncertainty to drive iterates to data as smoothing is annealed, and (ii) it facilitates analysis of model bias with Lipschitz constants. As distance to data can be expensive to compute online, we consider settings where we need amortize this computation. Instead of learning the distance however, we propose to learn its gradients directly as an oracle for first-order optimizers. We show these gradients can be efficiently learned with score-matching techniques by leveraging the equivalence between distance to data and data likelihood. Using this insight, we propose Score-Guided Planning (SGP), a planning algorithm for offline RL that utilizes score-matching to enable first-order planning in high-dimensional problems, where zeroth-order methods were unable to scale, and ensembles were unable to overcome local minima. Website: https://sites.google.com/view/score-guided-planning/home
Universal Visual Decomposer: Long-Horizon Manipulation Made Easy
Zhang, Zichen, Li, Yunshuang, Bastani, Osbert, Gupta, Abhishek, Jayaraman, Dinesh, Ma, Yecheng Jason, Weihs, Luca
Real-world robotic tasks stretch over extended horizons and encompass multiple stages. Learning long-horizon manipulation tasks, however, is a long-standing challenge, and demands decomposing the overarching task into several manageable subtasks to facilitate policy learning and generalization to unseen tasks. Prior task decomposition methods require task-specific knowledge, are computationally intensive, and cannot readily be applied to new tasks. To address these shortcomings, we propose Universal Visual Decomposer (UVD), an off-the-shelf task decomposition method for visual long horizon manipulation using pre-trained visual representations designed for robotic control. At a high level, UVD discovers subgoals by detecting phase shifts in the embedding space of the pre-trained representation. Operating purely on visual demonstrations without auxiliary information, UVD can effectively extract visual subgoals embedded in the videos, while incurring zero additional training cost on top of standard visuomotor policy training. Goal-conditioned policies learned with UVD-discovered subgoals exhibit significantly improved compositional generalization at test time to unseen tasks. Furthermore, UVD-discovered subgoals can be used to construct goal-based reward shaping that jump-starts temporally extended exploration for reinforcement learning. We extensively evaluate UVD on both simulation and real-world tasks, and in all cases, UVD substantially outperforms baselines across imitation and reinforcement learning settings on in-domain and out-of-domain task sequences alike, validating the clear advantage of automated visual task decomposition within the simple, compact UVD framework.
Beyond Uniform Sampling: Offline Reinforcement Learning with Imbalanced Datasets
Hong, Zhang-Wei, Kumar, Aviral, Karnik, Sathwik, Bhandwaldar, Abhishek, Srivastava, Akash, Pajarinen, Joni, Laroche, Romain, Gupta, Abhishek, Agrawal, Pulkit
Offline policy learning is aimed at learning decision-making policies using existing datasets of trajectories without collecting additional data. The primary motivation for using reinforcement learning (RL) instead of supervised learning techniques such as behavior cloning is to find a policy that achieves a higher average return than the trajectories constituting the dataset. However, we empirically find that when a dataset is dominated by suboptimal trajectories, state-of-the-art offline RL algorithms do not substantially improve over the average return of trajectories in the dataset. We argue this is due to an assumption made by current offline RL algorithms of staying close to the trajectories in the dataset. If the dataset primarily consists of sub-optimal trajectories, this assumption forces the policy to mimic the suboptimal actions. We overcome this issue by proposing a sampling strategy that enables the policy to only be constrained to ``good data" rather than all actions in the dataset (i.e., uniform sampling). We present a realization of the sampling strategy and an algorithm that can be used as a plug-and-play module in standard offline RL algorithms. Our evaluation demonstrates significant performance gains in 72 imbalanced datasets, D4RL dataset, and across three different offline RL algorithms. Code is available at https://github.com/Improbable-AI/dw-offline-rl.
RoboHive: A Unified Framework for Robot Learning
Kumar, Vikash, Shah, Rutav, Zhou, Gaoyue, Moens, Vincent, Caggiano, Vittorio, Vakil, Jay, Gupta, Abhishek, Rajeswaran, Aravind
Our platform encompasses a diverse range of pre-existing and novel environments, including dexterous manipulation with the Shadow Hand, whole-arm manipulation tasks with Franka and Fetch robots, quadruped locomotion, among others. Included environments are organized within and cover multiple domains such as hand manipulation, locomotion, multi-task, multi-agent, muscles, etc. In comparison to prior works, RoboHive offers a streamlined and unified task interface taking dependency on only a minimal set of well-maintained packages, features tasks with high physics fidelity and rich visual diversity, and supports common hardware drivers for real-world deployment. The unified interface of RoboHive offers a convenient and accessible abstraction for algorithmic research in imitation, reinforcement, multi-task, and hierarchical learning. Furthermore, RoboHive includes expert demonstrations and baseline results for most environments, providing a standard for benchmarking and comparisons.
Maximizing Success Rate of Payment Routing using Non-stationary Bandits
Chaudhary, Aayush, Rai, Abhinav, Gupta, Abhishek
This paper discusses the system architecture design and deployment of non-stationary multi-armed bandit approaches to determine a near-optimal payment routing policy based on the recent history of transactions. We propose a Routing Service architecture using a novel Ray-based implementation for optimally scaling bandit-based payment routing to over 10,000 transactions per second, adhering to the system design requirements and ecosystem constraints with Payment Card Industry Data Security Standard (PCI DSS). We first evaluate the effectiveness of multiple bandit-based payment routing algorithms on a custom simulator to benchmark multiple non-stationary bandit approaches and identify the best hyperparameters. We then conducted live experiments on the payment transaction system on a fantasy sports platform Dream11. In the live experiments, we demonstrated that our non-stationary bandit-based algorithm consistently improves the success rate of transactions by 0.92% compared to the traditional rule-based methods over one month.
Hoeffding's Inequality for Markov Chains under Generalized Concentrability Condition
Chen, Hao, Gupta, Abhishek, Sun, Yin, Shroff, Ness
This paper studies Hoeffding's inequality for Markov chains under the generalized concentrability condition defined via integral probability metric (IPM). The generalized concentrability condition establishes a framework that interpolates and extends the existing hypotheses of Markov chain Hoeffding-type inequalities. The flexibility of our framework allows Hoeffding's inequality to be applied beyond the ergodic Markov chains in the traditional sense. We demonstrate the utility by applying our framework to several non-asymptotic analyses arising from the field of machine learning, including (i) a generalization bound for empirical risk minimization with Markovian samples, (ii) a finite sample guarantee for Ployak-Ruppert averaging of SGD, and (iii) a new regret bound for rested Markovian bandits with general state space. Keywords: Hoeffding's inequality, Markov chains, Dobrushin coefficient, integral probability metric, concentration of measures, ergodicity, empirical risk minimization, stochastic gradient descent, rested bandit
Open-Sourcing Highly Capable Foundation Models: An evaluation of risks, benefits, and alternative methods for pursuing open-source objectives
Seger, Elizabeth, Dreksler, Noemi, Moulange, Richard, Dardaman, Emily, Schuett, Jonas, Wei, K., Winter, Christoph, Arnold, Mackenzie, hรigeartaigh, Seรกn ร, Korinek, Anton, Anderljung, Markus, Bucknall, Ben, Chan, Alan, Stafford, Eoghan, Koessler, Leonie, Ovadya, Aviv, Garfinkel, Ben, Bluemke, Emma, Aird, Michael, Levermore, Patrick, Hazell, Julian, Gupta, Abhishek
Recent decisions by leading AI labs to either open-source their models or to restrict access to their models has sparked debate about whether, and how, increasingly capable AI models should be shared. Open-sourcing in AI typically refers to making model architecture and weights freely and publicly accessible for anyone to modify, study, build on, and use. This offers advantages such as enabling external oversight, accelerating progress, and decentralizing control over AI development and use. However, it also presents a growing potential for misuse and unintended consequences. This paper offers an examination of the risks and benefits of open-sourcing highly capable foundation models. While open-sourcing has historically provided substantial net benefits for most software and AI development processes, we argue that for some highly capable foundation models likely to be developed in the near future, open-sourcing may pose sufficiently extreme risks to outweigh the benefits. In such a case, highly capable foundation models should not be open-sourced, at least not initially. Alternative strategies, including non-open-source model sharing options, are explored. The paper concludes with recommendations for developers, standard-setting bodies, and governments for establishing safe and responsible model sharing practices and preserving open-source benefits where safe.
Probabilistic Contraction Analysis of Iterated Random Operators
Gupta, Abhishek, Jain, Rahul, Glynn, Peter
In many branches of engineering, Banach contraction mapping theorem is employed to establish the convergence of certain deterministic algorithms. Randomized versions of these algorithms have been developed that have proved useful in data-driven problems. In a class of randomized algorithms, in each iteration, the contraction map is approximated with an operator that uses independent and identically distributed samples of certain random variables. This leads to iterated random operators acting on an initial point in a complete metric space, and it generates a Markov chain. In this paper, we develop a new stochastic dominance based proof technique, called probabilistic contraction analysis, for establishing the convergence in probability of Markov chains generated by such iterated random operators in certain limiting regime. The methods developed in this paper provides a general framework for understanding convergence of a wide variety of Monte Carlo methods in which contractive property is present. We apply the convergence result to conclude the convergence of fitted value iteration and fitted relative value iteration in continuous state and continuous action Markov decision problems as representative applications of the general framework developed here.
Guiding Pretraining in Reinforcement Learning with Large Language Models
Du, Yuqing, Watkins, Olivia, Wang, Zihan, Colas, Cรฉdric, Darrell, Trevor, Abbeel, Pieter, Gupta, Abhishek, Andreas, Jacob
Reinforcement learning algorithms typically struggle in the absence of a dense, well-shaped reward function. Intrinsically motivated exploration methods address this limitation by rewarding agents for visiting novel states or transitions, but these methods offer limited benefits in large environments where most discovered novelty is irrelevant for downstream tasks. We describe a method that uses background knowledge from text corpora to shape exploration. This method, called ELLM (Exploring with LLMs) rewards an agent for achieving goals suggested by a language model prompted with a description of the agent's current state. By leveraging large-scale language model pretraining, ELLM guides agents toward human-meaningful and plausibly useful behaviors without requiring a human in the loop. We evaluate ELLM in the Crafter game environment and the Housekeep robotic simulator, showing that ELLM-trained agents have better coverage of common-sense behaviors during pretraining and usually match or improve performance on a range of downstream tasks. Code available at https://github.com/yuqingd/ellm.
REBOOT: Reuse Data for Bootstrapping Efficient Real-World Dexterous Manipulation
Hu, Zheyuan, Rovinsky, Aaron, Luo, Jianlan, Kumar, Vikash, Gupta, Abhishek, Levine, Sergey
Dexterous manipulation tasks involving contact-rich interactions pose a significant challenge for both model-based control systems and imitation learning algorithms. The complexity arises from the need for multi-fingered robotic hands to dynamically establish and break contacts, balance non-prehensile forces, and control large degrees of freedom. Reinforcement learning (RL) offers a promising approach due to its general applicability and capacity to autonomously acquire optimal manipulation strategies. However, its real-world application is often hindered by the necessity to generate a large number of samples, reset the environment, and obtain reward signals. In this work, we introduce an efficient system for learning dexterous manipulation skills with RL to alleviate these challenges. The main idea of our approach is the integration of recent advances in sample-efficient RL and replay buffer bootstrapping. This combination allows us to utilize data from different tasks or objects as a starting point for training new tasks, significantly improving learning efficiency. Additionally, our system completes the real-world training cycle by incorporating learned resets via an imitation-based pickup policy as well as learned reward functions, eliminating the need for manual resets and reward engineering. We demonstrate the benefits of reusing past data as replay buffer initialization for new tasks, for instance, the fast acquisition of intricate manipulation skills in the real world on a four-fingered robotic hand. (Videos: https://sites.google.com/view/reboot-dexterous)