Guo, Zonghao
DeepPerception: Advancing R1-like Cognitive Visual Perception in MLLMs for Knowledge-Intensive Visual Grounding
Ma, Xinyu, Ding, Ziyang, Luo, Zhicong, Chen, Chi, Guo, Zonghao, Wong, Derek F., Feng, Xiaoyi, Sun, Maosong
Human experts excel at fine-grained visual discrimination by leveraging domain knowledge to refine perceptual features, a capability that remains underdeveloped in current Multimodal Large Language Models (MLLMs). Despite possessing vast expert-level knowledge, MLLMs struggle to integrate reasoning into visual perception, often generating direct responses without deeper analysis. T o bridge this gap, we introduce knowledge-intensive visual grounding (KVG), a novel visual grounding task that requires both fine-grained perception and domain-specific knowledge integration. T o address the challenges of KVG, we propose DeepPerception, an MLLM enhanced with cognitive visual perception capabilities. Our approach consists of (1) an automated data synthesis pipeline that generates high-quality, knowledge-aligned training samples, and (2) a two-stage training framework combining supervised fine-tuning for cognitive reasoning scaffolding and reinforcement learning to optimize perception-cognition synergy. T o benchmark performance, we introduce KVG-Bench, a comprehensive dataset spanning 10 domains with 1.3K manually curated test cases. Experimental results demonstrate that DeepPerception significantly outperforms direct fine-tuning, achieving +8.08% accuracy improvements on KVG-Bench and exhibiting +4.60% superior cross-domain generalization over baseline approaches. Our findings highlight the importance of integrating cognitive processes into MLLMs for human-like visual perception and open new directions for multimodal reasoning research. The data, codes, and models are released at https://github.com/thunlp/
Migician: Revealing the Magic of Free-Form Multi-Image Grounding in Multimodal Large Language Models
Li, You, Huang, Heyu, Chen, Chi, Huang, Kaiyu, Huang, Chao, Guo, Zonghao, Liu, Zhiyuan, Xu, Jinan, Li, Yuhua, Li, Ruixuan, Sun, Maosong
The recent advancement of Multimodal Large Language Models (MLLMs) has significantly improved their fine-grained perception of single images and general comprehension across multiple images. However, existing MLLMs still face challenges in achieving precise grounding in complex multi-image scenarios. To address this, we first explore a Chain-of-Thought (CoT) framework that integrates single-image grounding with multi-image comprehension. While partially effective, it remains unstable and struggles to capture abstract visual information due to its non-end-to-end nature. Therefore, we introduce Migician, the first multi-image grounding model capable of performing free-form and accurate grounding across multiple images. To support this, we present the MGrounding-630k dataset, which comprises data for several multi-image grounding tasks derived from existing datasets, along with newly generated free-form grounding instruction-following data. Furthermore, we propose MIG-Bench, a comprehensive benchmark specifically designed for evaluating multi-image grounding capabilities. Experimental results demonstrate that our model achieves significantly superior multi-image grounding capabilities, outperforming the best existing MLLMs by 21.61% and even surpassing much larger 70B models. Our code, model, dataset, and benchmark are fully open-sourced at https://migician-vg.github.io/.
DPVS-Shapley:Faster and Universal Contribution Evaluation Component in Federated Learning
Yin, Ketin, Guo, Zonghao, Qin, ZhengHan
In the current era of artificial intelligence, federated learning has emerged as a novel approach to addressing data privacy concerns inherent in centralized learning paradigms. This decentralized learning model not only mitigates the risk of data breaches but also enhances the system's scalability and robustness. However, this approach introduces a new challenge: how to fairly and accurately assess the contribution of each participant. Developing an effective contribution evaluation mechanism is crucial for federated learning. Such a mechanism incentivizes participants to actively contribute their data and computational resources, thereby improving the overall performance of the federated learning system. By allocating resources and rewards based on the size of the contributions, it ensures that each participant receives fair treatment, fostering sustained engagement.Currently, Shapley value-based methods are widely used to evaluate participants' contributions, with many researchers proposing modifications to adapt these methods to real-world scenarios. In this paper, we introduce a component called Dynamic Pruning Validation Set Shapley (DPVS-Shapley). This method accelerates the contribution assessment process by dynamically pruning the original dataset without compromising the evaluation's accuracy. Furthermore, this component can assign different weights to various samples, thereby allowing clients capable of distinguishing difficult examples to receive higher contribution scores.
LLaVA-UHD: an LMM Perceiving Any Aspect Ratio and High-Resolution Images
Xu, Ruyi, Yao, Yuan, Guo, Zonghao, Cui, Junbo, Ni, Zanlin, Ge, Chunjiang, Chua, Tat-Seng, Liu, Zhiyuan, Sun, Maosong, Huang, Gao
Visual encoding constitutes the basis of large multimodal models (LMMs) in understanding the visual world. Conventional LMMs process images in fixed sizes and limited resolutions, while recent explorations in this direction are limited in adaptivity, efficiency, and even correctness. In this work, we first take GPT-4V and LLaVA-1.5 as representative examples and expose systematic flaws rooted in their visual encoding strategy. To address the challenges, we present LLaVA-UHD, a large multimodal model that can efficiently perceive images in any aspect ratio and high resolution. LLaVA-UHD includes three key components: (1) An image modularization strategy that divides native-resolution images into smaller variable-sized slices for efficient and extensible encoding, (2) a compression module that further condenses image tokens from visual encoders, and (3) a spatial schema to organize slice tokens for LLMs. Comprehensive experiments show that LLaVA-UHD outperforms established LMMs trained with 2-3 orders of magnitude more data on 9 benchmarks. Notably, our model built on LLaVA-1.5 336x336 supports 6 times larger (i.e., 672x1088) resolution images using only 94% inference computation, and achieves 6.4 accuracy improvement on TextVQA. Moreover, the model can be efficiently trained in academic settings, within 23 hours on 8 A100 GPUs (vs. 26 hours of LLaVA-1.5). We make the data and code publicly available at https://github.com/thunlp/LLaVA-UHD.