Guo, Zhengrui
Neuron Platonic Intrinsic Representation From Dynamics Using Contrastive Learning
Wu, Wei, Liao, Can, Deng, Zizhen, Guo, Zhengrui, Wang, Jinzhuo
The Platonic Representation Hypothesis suggests a universal, modality-independent reality representation behind different data modalities. Inspired by this, we view each neuron as a system and detect its multi-segment activity data under various peripheral conditions. We assume there's a time-invariant representation for the same neuron, reflecting its intrinsic properties like molecular profiles, location, and morphology. The goal of obtaining these intrinsic neuronal representations has two criteria: (I) segments from the same neuron should have more similar representations than those from different neurons; (II) the representations must generalize well to out-of-domain data. To meet these, we propose the NeurPIR (Neuron Platonic Intrinsic Representation) framework. It uses contrastive learning, with segments from the same neuron as positive pairs and those from different neurons as negative pairs. In implementation, we use VICReg, which focuses on positive pairs and separates dissimilar samples via regularization. We tested our method on Izhikevich model-simulated neuronal population dynamics data. The results accurately identified neuron types based on preset hyperparameters. We also applied it to two real-world neuron dynamics datasets with neuron type annotations from spatial transcriptomics and neuron locations. Our model's learned representations accurately predicted neuron types and locations and were robust on out-of-domain data (from unseen animals). This shows the potential of our approach for understanding neuronal systems and future neuroscience research.
FOCUS: Knowledge-enhanced Adaptive Visual Compression for Few-shot Whole Slide Image Classification
Guo, Zhengrui, Xiong, Conghao, Ma, Jiabo, Sun, Qichen, Feng, Lishuang, Wang, Jinzhuo, Chen, Hao
Few-shot learning presents a critical solution for cancer diagnosis in computational pathology (CPath), addressing fundamental limitations in data availability, particularly the scarcity of expert annotations and patient privacy constraints. A key challenge in this paradigm stems from the inherent disparity between the limited training set of whole slide images (WSIs) and the enormous number of contained patches, where a significant portion of these patches lacks diagnostically relevant information, potentially diluting the model's ability to learn and focus on critical diagnostic features. While recent works attempt to address this by incorporating additional knowledge, several crucial gaps hinder further progress: (1) despite the emergence of powerful pathology foundation models (FMs), their potential remains largely untapped, with most approaches limiting their use to basic feature extraction; (2) current language guidance mechanisms attempt to align text prompts with vast numbers of WSI patches all at once, struggling to leverage rich pathological semantic information. To this end, we introduce the knowledge-enhanced adaptive visual compression framework, dubbed FOCUS, which uniquely combines pathology FMs with language prior knowledge to enable a focused analysis of diagnostically relevant regions by prioritizing discriminative WSI patches. Our approach implements a progressive three-stage compression strategy: we first leverage FMs for global visual redundancy elimination, and integrate compressed features with language prompts for semantic relevance assessment, then perform neighbor-aware visual token filtering while preserving spatial coherence. Extensive experiments on pathological datasets spanning breast, lung, and ovarian cancers demonstrate its superior performance in few-shot pathology diagnosis. Code will be made available at https://github.com/dddavid4real/FOCUS.
BLEND: Behavior-guided Neural Population Dynamics Modeling via Privileged Knowledge Distillation
Guo, Zhengrui, Zhou, Fangxu, Wu, Wei, Sun, Qichen, Feng, Lishuang, Wang, Jinzhuo, Chen, Hao
Modeling the nonlinear dynamics of neuronal populations represents a key pursuit in computational neuroscience. Recent research has increasingly focused on jointly modeling neural activity and behavior to unravel their interconnections. Despite significant efforts, these approaches often necessitate either intricate model designs or oversimplified assumptions. Given the frequent absence of perfectly paired neural-behavioral datasets in real-world scenarios when deploying these models, a critical yet understudied research question emerges: how to develop a model that performs well using only neural activity as input at inference, while benefiting from the insights gained from behavioral signals during training? To this end, we propose BLEND, the Behavior-guided neuraL population dynamics modElling framework via privileged kNowledge Distillation. By considering behavior as privileged information, we train a teacher model that takes both behavior observations (privileged features) and neural activities (regular features) as inputs. A student model is then distilled using only neural activity. Unlike existing methods, our framework is model-agnostic and avoids making strong assumptions about the relationship between behavior and neural activity. This allows BLEND to enhance existing neural dynamics modeling architectures without developing specialized models from scratch. Extensive experiments across neural population activity modeling and transcriptomic neuron identity prediction tasks demonstrate strong capabilities of BLEND, reporting over 50% improvement in behavioral decoding and over 15% improvement in transcriptomic neuron identity prediction after behavior-guided distillation. Furthermore, we empirically explore various behavior-guided distillation strategies within the BLEND framework and present a comprehensive analysis of effectiveness and implications for model performance. In this paper, we benchmark all the methods under the framework of masked neural activity reconstruction, in which the model is firstly trained in an unsupervised manner to reconstruct the randomly masked neural activity and then applied to downstream tasks such as neural activity prediction and behavior decoding.
HistGen: Histopathology Report Generation via Local-Global Feature Encoding and Cross-modal Context Interaction
Guo, Zhengrui, Ma, Jiabo, Xu, Yingxue, Wang, Yihui, Wang, Liansheng, Chen, Hao
Histopathology serves as the gold standard in cancer diagnosis, with clinical reports being vital in interpreting and understanding this process, guiding cancer treatment and patient care. The automation of histopathology report generation with deep learning stands to significantly enhance clinical efficiency and lessen the labor-intensive, time-consuming burden on pathologists in report writing. In pursuit of this advancement, we introduce HistGen, a multiple instance learning-empowered framework for histopathology report generation together with the first benchmark dataset for evaluation. Inspired by diagnostic and report-writing workflows, HistGen features two delicately designed modules, aiming to boost report generation by aligning whole slide images (WSIs) and diagnostic reports from local and global granularity. To achieve this, a local-global hierarchical encoder is developed for efficient visual feature aggregation from a region-to-slide perspective. Meanwhile, a cross-modal context module is proposed to explicitly facilitate alignment and interaction between distinct modalities, effectively bridging the gap between the extensive visual sequences of WSIs and corresponding highly summarized reports. Experimental results on WSI report generation show the proposed model outperforms state-of-the-art (SOTA) models by a large margin. Moreover, the results of fine-tuning our model on cancer subtyping and survival analysis tasks further demonstrate superior performance compared to SOTA methods, showcasing strong transfer learning capability. Dataset, model weights, and source code are available in https://github.com/dddavid4real/HistGen.
Label-Efficient Deep Learning in Medical Image Analysis: Challenges and Future Directions
Jin, Cheng, Guo, Zhengrui, Lin, Yi, Luo, Luyang, Chen, Hao
Deep learning has seen rapid growth in recent years and achieved state-of-the-art performance in a wide range of applications. However, training models typically requires expensive and time-consuming collection of large quantities of labeled data. This is particularly true within the scope of medical imaging analysis (MIA), where data are limited and labels are expensive to be acquired. Thus, label-efficient deep learning methods are developed to make comprehensive use of the labeled data as well as the abundance of unlabeled and weak-labeled data. In this survey, we extensively investigated over 300 recent papers to provide a comprehensive overview of recent progress on label-efficient learning strategies in MIA. We first present the background of label-efficient learning and categorize the approaches into different schemes. Next, we examine the current state-of-the-art methods in detail through each scheme. Specifically, we provide an in-depth investigation, covering not only canonical semi-supervised, self-supervised, and multi-instance learning schemes, but also recently emerged active and annotation-efficient learning strategies. Moreover, as a comprehensive contribution to the field, this survey not only elucidates the commonalities and unique features of the surveyed methods but also presents a detailed analysis of the current challenges in the field and suggests potential avenues for future research.