Goto

Collaborating Authors

 Guo, Yuxiang


Snoopy: Effective and Efficient Semantic Join Discovery via Proxy Columns

arXiv.org Artificial Intelligence

Semantic join discovery, which aims to find columns in a table repository with high semantic joinabilities to a query column, is crucial for dataset discovery. Existing methods can be divided into two categories: cell-level methods and column-level methods. However, neither of them ensures both effectiveness and efficiency simultaneously. Cell-level methods, which compute the joinability by counting cell matches between columns, enjoy ideal effectiveness but suffer poor efficiency. In contrast, column-level methods, which determine joinability only by computing the similarity of column embeddings, enjoy proper efficiency but suffer poor effectiveness due to the issues occurring in their column embeddings: (i) semantics-joinability-gap, (ii) size limit, and (iii) permutation sensitivity. To address these issues, this paper proposes to compute column embeddings via proxy columns; furthermore, a novel column-level semantic join discovery framework, Snoopy, is presented, leveraging proxy-column-based embeddings to bridge effectiveness and efficiency. Specifically, the proposed column embeddings are derived from the implicit column-to-proxy-column relationships, which are captured by the lightweight approximate-graph-matching-based column projection.To acquire good proxy columns for guiding the column projection, we introduce a rank-aware contrastive learning paradigm. Extensive experiments on four real-world datasets demonstrate that Snoopy outperforms SOTA column-level methods by 16% in Recall@25 and 10% in NDCG@25, and achieves superior efficiency--being at least 5 orders of magnitude faster than cell-level solutions, and 3.5x faster than existing column-level methods.


DASKT: A Dynamic Affect Simulation Method for Knowledge Tracing

arXiv.org Artificial Intelligence

Knowledge Tracing (KT) predicts future performance by modeling students' historical interactions, and understanding students' affective states can enhance the effectiveness of KT, thereby improving the quality of education. Although traditional KT values students' cognition and learning behaviors, efficient evaluation of students' affective states and their application in KT still require further exploration due to the non-affect-oriented nature of the data and budget constraints. To address this issue, we propose a computation-driven approach, Dynamic Affect Simulation Knowledge Tracing (DASKT), to explore the impact of various student affective states (such as frustration, concentration, boredom, and confusion) on their knowledge states. In this model, we first extract affective factors from students' non-affect-oriented behavioral data, then use clustering and spatiotemporal sequence modeling to accurately simulate students' dynamic affect changes when dealing with different problems. Subsequently, {\color{blue}we incorporate affect with time-series analysis to improve the model's ability to infer knowledge states over time and space.} Extensive experimental results on two public real-world educational datasets show that DASKT can achieve more reasonable knowledge states under the effect of students' affective states. Moreover, DASKT outperforms the most advanced KT methods in predicting student performance. Our research highlights a promising avenue for future KT studies, focusing on achieving high interpretability and accuracy.


An Immersive Multi-Elevation Multi-Seasonal Dataset for 3D Reconstruction and Visualization

arXiv.org Artificial Intelligence

Significant progress has been made in photo-realistic scene reconstruction over recent years. Various disparate efforts have enabled capabilities such as multi-appearance or large-scale modeling; however, there lacks a welldesigned dataset that can evaluate the holistic progress of scene reconstruction. We introduce a collection of imagery of the Johns Hopkins Homewood Campus, acquired at different seasons, times of day, in multiple elevations, and across a large scale. We perform a multi-stage calibration process, which efficiently recover camera parameters from phone and drone cameras. This dataset can enable researchers to rigorously explore challenges in unconstrained settings, including effects of inconsistent illumination, reconstruction from large scale and from significantly different perspectives, etc.


TODO: Enhancing LLM Alignment with Ternary Preferences

arXiv.org Artificial Intelligence

Aligning large language models (LLMs) with human intent is critical for enhancing their performance across a variety of tasks. Standard alignment techniques, such as Direct Preference Optimization (DPO), often rely on the binary Bradley-Terry (BT) model, which can struggle to capture the complexities of human preferences -- particularly in the presence of noisy or inconsistent labels and frequent ties. To address these limitations, we introduce the Tie-rank Oriented Bradley-Terry model (TOBT), an extension of the BT model that explicitly incorporates ties, enabling more nuanced preference representation. Building on this, we propose Tie-rank Oriented Direct Preference Optimization (TODO), a novel alignment algorithm that leverages TOBT's ternary ranking system to improve preference alignment. In evaluations on Mistral-7B and Llama 3-8B models, TODO consistently outperforms DPO in modeling preferences across both in-distribution and out-of-distribution datasets. Additional assessments using MT Bench and benchmarks such as Piqa, ARC-c, and MMLU further demonstrate TODO's superior alignment performance. Notably, TODO also shows strong results in binary preference alignment, highlighting its versatility and potential for broader integration into LLM alignment. The implementation details can be found in https://github.com/XXares/TODO.


SCCA: Shifted Cross Chunk Attention for long contextual semantic expansion

arXiv.org Artificial Intelligence

Sparse attention as a efficient method can significantly decrease the computation cost, but current sparse attention tend to rely on window self attention which block the global information flow. For this problem, we present Shifted Cross Chunk Attention (SCCA), using different KV shifting strategy to extend respective field in each attention layer. Except, we combine Dilated Attention(DA) and Dilated Neighborhood Attention(DNA) to present Shifted Dilated Attention(SDA). Both SCCA and SDA can accumulate attention results in multi head attention to obtain approximate respective field in full attention. In this paper, we conduct language modeling experiments using different pattern of SCCA and combination of SCCA and SDA. The proposed shifted cross chunk attention (SCCA) can effectively extend large language models (LLMs) to longer context combined with Positional interpolation(PI) and LoRA than current sparse attention. Notably, SCCA adopts LLaMA2 7B from 4k context to 8k in single V100. This attention pattern can provide a Plug-and-play fine-tuning method to extend model context while retaining their original architectures, and is compatible with most existing techniques.


Instruct2Attack: Language-Guided Semantic Adversarial Attacks

arXiv.org Artificial Intelligence

We propose Instruct2Attack (I2A), a language-guided semantic attack that generates semantically meaningful perturbations according to free-form language instructions. We make use of state-of-the-art latent diffusion models, where we adversarially guide the reverse diffusion process to search for an adversarial latent code conditioned on the input image and text instruction. Compared to existing noise-based and semantic attacks, I2A generates more natural and diverse adversarial examples while providing better controllability and interpretability. We further automate the attack process with GPT-4 to generate diverse image-specific text instructions. We show that I2A can successfully break state-of-the-art deep neural networks even under strong adversarial defenses, and demonstrate great transferability among a variety of network architectures.


A study on the impact of pre-trained model on Just-In-Time defect prediction

arXiv.org Artificial Intelligence

Previous researchers conducting Just-In-Time (JIT) defect prediction tasks have primarily focused on the performance of individual pre-trained models, without exploring the relationship between different pre-trained models as backbones. In this study, we build six models: RoBERTaJIT, CodeBERTJIT, BARTJIT, PLBARTJIT, GPT2JIT, and CodeGPTJIT, each with a distinct pre-trained model as its backbone. We systematically explore the differences and connections between these models. Specifically, we investigate the performance of the models when using Commit code and Commit message as inputs, as well as the relationship between training efficiency and model distribution among these six models. Additionally, we conduct an ablation experiment to explore the sensitivity of each model to inputs. Furthermore, we investigate how the models perform in zero-shot and few-shot scenarios. Our findings indicate that each model based on different backbones shows improvements, and when the backbone's pre-training model is similar, the training resources that need to be consumed are much more closer. We also observe that Commit code plays a significant role in defect detection, and different pre-trained models demonstrate better defect detection ability with a balanced dataset under few-shot scenarios. These results provide new insights for optimizing JIT defect prediction tasks using pre-trained models and highlight the factors that require more attention when constructing such models. Additionally, CodeGPTJIT and GPT2JIT achieved better performance than DeepJIT and CC2Vec on the two datasets respectively under 2000 training samples. These findings emphasize the effectiveness of transformer-based pre-trained models in JIT defect prediction tasks, especially in scenarios with limited training data.