Goto

Collaborating Authors

 Guo, Yifan


Imperative Learning: A Self-supervised Neural-Symbolic Learning Framework for Robot Autonomy

arXiv.org Artificial Intelligence

Data-driven methods such as reinforcement and imitation learning have achieved remarkable success in robot autonomy. However, their data-centric nature still hinders them from generalizing well to ever-changing environments. Moreover, collecting large datasets for robotic tasks is often impractical and expensive. To overcome these challenges, we introduce a new self-supervised neural-symbolic (NeSy) computational framework, imperative learning (IL), for robot autonomy, leveraging the generalization abilities of symbolic reasoning. The framework of IL consists of three primary components: a neural module, a reasoning engine, and a memory system. We formulate IL as a special bilevel optimization (BLO), which enables reciprocal learning over the three modules. This overcomes the label-intensive obstacles associated with data-driven approaches and takes advantage of symbolic reasoning concerning logical reasoning, physical principles, geometric analysis, etc. We discuss several optimization techniques for IL and verify their effectiveness in five distinct robot autonomy tasks including path planning, rule induction, optimal control, visual odometry, and multi-robot routing. Through various experiments, we show that IL can significantly enhance robot autonomy capabilities and we anticipate that it will catalyze further research across diverse domains.


iMTSP: Solving Min-Max Multiple Traveling Salesman Problem with Imperative Learning

arXiv.org Artificial Intelligence

This paper considers a Min-Max Multiple Traveling Salesman Problem (MTSP), where the goal is to find a set of tours, one for each agent, to collectively visit all the cities while minimizing the length of the longest tour. Though MTSP has been widely studied, obtaining near-optimal solutions for large-scale problems is still challenging due to its NP-hardness. Recent efforts in data-driven methods face challenges of the need for hard-to-obtain supervision and issues with high variance in gradient estimations, leading to slow convergence and highly suboptimal solutions. We address these issues by reformulating MTSP as a bilevel optimization problem, using the concept of imperative learning (IL). This involves introducing an allocation network that decomposes the MTSP into multiple single-agent traveling salesman problems (TSPs). The longest tour from these TSP solutions is then used to self-supervise the allocation network, resulting in a new self-supervised, bilevel, end-to-end learning framework, which we refer to as imperative MTSP (iMTSP). Additionally, to tackle the high-variance gradient issues during the optimization, we introduce a control variate-based gradient estimation algorithm. Our experiments showed that these innovative designs enable our gradient estimator to converge 20% faster than the advanced reinforcement learning baseline and find up to 80% shorter tour length compared with Google OR-Tools MTSP solver, especially in large-scale problems (e.g. 1000 cities and 15 agents).


Dynamic Dual-Graph Fusion Convolutional Network For Alzheimer's Disease Diagnosis

arXiv.org Artificial Intelligence

In this paper, a dynamic dual-graph fusion convolutional network is proposed to improve Alzheimer's disease (AD) diagnosis performance. The following are the paper's main contributions: (a) propose a novel dynamic GCN architecture, which is an end-to-end pipeline for diagnosis of the AD task; (b) the proposed architecture can dynamically adjust the graph structure for GCN to produce better diagnosis outcomes by learning the optimal underlying latent graph; (c) incorporate feature graph learning and dynamic graph learning, giving those useful features of subjects more weight while decreasing the weights of other noise features. Experiments indicate that our model provides flexibility and stability while achieving excellent classification results in AD diagnosis.