Goto

Collaborating Authors

 Guo, Xin


Fin-R1: A Large Language Model for Financial Reasoning through Reinforcement Learning

arXiv.org Artificial Intelligence

Reasoning large language models are rapidly evolving across various domains. However, their capabilities in handling complex financial tasks still require in-depth exploration. In this paper, we introduce Fin-R1, a reasoning large language model specifically designed for the financial sector. Fin-R1 is built using a two-stage architecture, leveraging a financial reasoning dataset distilled and processed based on DeepSeek-R1. Through supervised fine-tuning (SFT) and reinforcement learning (RL) training, it demonstrates performance close to DeepSeek-R1 with a parameter size of 7 billion across a range of financial reasoning tasks. It achieves the state-of-the-art (SOTA) in the FinQA and ConvFinQA tasks between those LLMs in our evaluation, surpassing larger models in other tasks as well. Fin-R1 showcases strong reasoning and decision-making capabilities, providing solutions to various problems encountered in the financial domain. Our code is available at https://github.com/SUFE-AIFLM-Lab/Fin-R1.


Aneumo: A Large-Scale Comprehensive Synthetic Dataset of Aneurysm Hemodynamics

arXiv.org Artificial Intelligence

Intracranial aneurysm (IA) is a common cerebrovascular disease that is usually asymptomatic but may cause severe subarachnoid hemorrhage (SAH) if ruptured. Although clinical practice is usually based on individual factors and morphological features of the aneurysm, its pathophysiology and hemodynamic mechanisms remain controversial. To address the limitations of current research, this study constructed a comprehensive hemodynamic dataset of intracranial aneurysms. The dataset is based on 466 real aneurysm models, and 10,000 synthetic models were generated by resection and deformation operations, including 466 aneurysm-free models and 9,534 deformed aneurysm models. The dataset also provides medical image-like segmentation mask files to support insightful analysis. In addition, the dataset contains hemodynamic data measured at eight steady-state flow rates (0.001 to 0.004 kg/s), including critical parameters such as flow velocity, pressure, and wall shear stress, providing a valuable resource for investigating aneurysm pathogenesis and clinical prediction. This dataset will help advance the understanding of the pathologic features and hemodynamic mechanisms of intracranial aneurysms and support in-depth research in related fields. Dataset hosted at https://github.com/Xigui-Li/Aneumo.


A Deep Semantic Segmentation Network with Semantic and Contextual Refinements

arXiv.org Artificial Intelligence

Semantic segmentation is a fundamental task in multimedia processing, which can be used for analyzing, understanding, editing contents of images and videos, among others. To accelerate the analysis of multimedia data, existing segmentation researches tend to extract semantic information by progressively reducing the spatial resolutions of feature maps. However, this approach introduces a misalignment problem when restoring the resolution of high-level feature maps. In this paper, we design a Semantic Refinement Module (SRM) to address this issue within the segmentation network. Specifically, SRM is designed to learn a transformation offset for each pixel in the upsampled feature maps, guided by high-resolution feature maps and neighboring offsets. By applying these offsets to the upsampled feature maps, SRM enhances the semantic representation of the segmentation network, particularly for pixels around object boundaries. Furthermore, a Contextual Refinement Module (CRM) is presented to capture global context information across both spatial and channel dimensions. To balance dimensions between channel and space, we aggregate the semantic maps from all four stages of the backbone to enrich channel context information. The efficacy of these proposed modules is validated on three widely used datasets-Cityscapes, Bdd100K, and ADE20K-demonstrating superior performance compared to state-of-the-art methods. Additionally, this paper extends these modules to a lightweight segmentation network, achieving an mIoU of 82.5% on the Cityscapes validation set with only 137.9 GFLOPs.


A feature refinement module for light-weight semantic segmentation network

arXiv.org Artificial Intelligence

Low computational complexity and high segmentation accuracy are both essential to the real-world semantic segmentation tasks. However, to speed up the model inference, most existing approaches tend to design light-weight networks with a very limited number of parameters, leading to a considerable degradation in accuracy due to the decrease of the representation ability of the networks. To solve the problem, this paper proposes a novel semantic segmentation method to improve the capacity of obtaining semantic information for the light-weight network. Specifically, a feature refinement module (FRM) is proposed to extract semantics from multi-stage feature maps generated by the backbone and capture non-local contextual information by utilizing a transformer block. On Cityscapes and Bdd100K datasets, the experimental results demonstrate that the proposed method achieves a promising trade-off between accuracy and computational cost, especially for Cityscapes test set where 80.4% mIoU is achieved and only 214.82 GFLOPs are required.


Personalize to generalize: Towards a universal medical multi-modality generalization through personalization

arXiv.org Artificial Intelligence

The differences among medical imaging modalities, driven by distinct underlying principles, pose significant challenges for generalization in multi-modal medical tasks. Beyond modality gaps, individual variations, such as differences in organ size and metabolic rate, further impede a model's ability to generalize effectively across both modalities and diverse populations. Despite the importance of personalization, existing approaches to multi-modal generalization often neglect individual differences, focusing solely on common anatomical features. This limitation may result in weakened generalization in various medical tasks. In this paper, we unveil that personalization is critical for multi-modal generalization. Specifically, we propose an approach to achieve personalized generalization through approximating the underlying personalized invariant representation ${X}_h$ across various modalities by leveraging individual-level constraints and a learnable biological prior. We validate the feasibility and benefits of learning a personalized ${X}_h$, showing that this representation is highly generalizable and transferable across various multi-modal medical tasks. Extensive experimental results consistently show that the additionally incorporated personalization significantly improves performance and generalization across diverse scenarios, confirming its effectiveness.


Training Large Language Models for Reasoning through Reverse Curriculum Reinforcement Learning

arXiv.org Artificial Intelligence

In this paper, we propose R$^3$: Learning Reasoning through Reverse Curriculum Reinforcement Learning (RL), a novel method that employs only outcome supervision to achieve the benefits of process supervision for large language models. The core challenge in applying RL to complex reasoning is to identify a sequence of actions that result in positive rewards and provide appropriate supervision for optimization. Outcome supervision provides sparse rewards for final results without identifying error locations, whereas process supervision offers step-wise rewards but requires extensive manual annotation. R$^3$ overcomes these limitations by learning from correct demonstrations. Specifically, R$^3$ progressively slides the start state of reasoning from a demonstration's end to its beginning, facilitating easier model exploration at all stages. Thus, R$^3$ establishes a step-wise curriculum, allowing outcome supervision to offer step-level signals and precisely pinpoint errors. Using Llama2-7B, our method surpasses RL baseline on eight reasoning tasks by $4.1$ points on average. Notebaly, in program-based reasoning on GSM8K, it exceeds the baseline by $4.2$ points across three backbone models, and without any extra data, Codellama-7B + R$^3$ performs comparable to larger models or closed-source models.


Multimodal Urban Areas of Interest Generation via Remote Sensing Imagery and Geographical Prior

arXiv.org Artificial Intelligence

Urban area-of-interest (AOI) refers to an integrated urban functional zone with defined polygonal boundaries. The rapid development of urban commerce has led to increasing demands for highly accurate and timely AOI data. However, existing research primarily focuses on coarse-grained functional zones for urban planning or regional economic analysis, and often neglects the expiration of AOI in the real world. They fail to fulfill the precision demands of Mobile Internet Online-to-Offline (O2O) businesses. These businesses require accuracy down to a specific community, school, or hospital. In this paper, we propose a comprehensive end-to-end multimodal deep learning framework designed for simultaneously detecting accurate AOI boundaries and validating the reliability of AOI by leveraging remote sensing imagery coupled with geographical prior, titled AOITR. Unlike conventional AOI generation methods, such as the Road-cut method that segments road networks at various levels, our approach diverges from semantic segmentation algorithms that depend on pixel-level classification. Instead, our AOITR begins by selecting a point-of-interest (POI) of specific category, and uses it to retrieve corresponding remote sensing imagery and geographical prior such as entrance POIs and road nodes. This information helps to build a multimodal detection model based on transformer encoder-decoder architecture to regress the AOI polygon. Additionally, we utilize the dynamic features from human mobility, nearby POIs, and logistics addresses for AOI reliability evaluation via a cascaded network module. The experimental results reveal that our algorithm achieves a significant improvement on Intersection over Union (IoU) metric, surpassing previous methods by a large margin.


Transportation Market Rate Forecast Using Signature Transform

arXiv.org Artificial Intelligence

Linehaul transportation costs make up a significant portion of overall Amazon transportation costs. To manage these costs, Amazon has developed a variety of tools to manage linehaul capacity mix and procurement. One key input to all of these models is the forecast of transportation marketplace rates, which however are notoriously difficult to forecast - they are driven a number of factors: the ever-changing network of tens of thousands of drivers, shippers of all sizes with a mix of occasional, seasonal, and regular demand, a huge set of brokers, traditional and digital exchanges, and local, regional, national, and international economic factors of all kinds. In addition, the transportation marketplace frequently goes through fundamental shifts - whether because of wars, pandemics, fuel prices, or due to shifting international trade patterns. Although Amazon has purchased externally-created forecasts for some time, these forecasts are neither explainable nor sufficient/accurate to the specific Amazon needs. To address this challenge, we built a forecasting model based on time series data to predict weekly marketplace rates for the North America market, at both the national and the regional levels. Our approach incorporates an innovative statistical technique capable of efficiently capturing significant fluctuations in transportation marketplace rates.


Fast Policy Learning for Linear Quadratic Control with Entropy Regularization

arXiv.org Artificial Intelligence

This paper proposes and analyzes two new policy learning methods: regularized policy gradient (RPG) and iterative policy optimization (IPO), for a class of discounted linear-quadratic control (LQC) problems over an infinite time horizon with entropy regularization. Assuming access to the exact policy evaluation, both proposed approaches are proven to converge linearly in finding optimal policies of the regularized LQC. Moreover, the IPO method can achieve a super-linear convergence rate once it enters a local region around the optimal policy. Finally, when the optimal policy for an RL problem with a known environment is appropriately transferred as the initial policy to an RL problem with an unknown environment, the IPO method is shown to enable a super-linear convergence rate if the two environments are sufficiently close. Performances of these proposed algorithms are supported by numerical examples.


Markov $\alpha$-Potential Games: Equilibrium Approximation and Regret Analysis

arXiv.org Artificial Intelligence

This paper proposes a new notion of Markov α-potential games to study Markov games. Two important classes of practically significant Markov games, Markov congestion games and the perturbed Markov team games, are analyzed in this framework of Markov α-potential games, with explicit characterization of the upper bound for α and its relation to game parameters. Moreover, any maximizer of the α-potential function is shown to be an α-stationary Nash equilibrium of the game. Furthermore, two algorithms for the Nash regret analysis, namely the projected gradient-ascent algorithm and the sequential maximum improvement algorithm, are presented and corroborated by numerical experiments. Key words: Markov α-potential games; Markov potential games; Multi-agent reinforcement learning; Nash-regret; Markov congestion games; Perturbed Markov team games; Projected gradient-ascent algorithm; Sequential maximum improvement.