Guo, Taicheng
Knowledge Graph Enhanced Language Agents for Recommendation
Guo, Taicheng, Liu, Chaochun, Wang, Hai, Mannam, Varun, Wang, Fang, Chen, Xin, Zhang, Xiangliang, Reddy, Chandan K.
Language agents have recently been used to simulate human behavior and user-item interactions for recommendation systems. However, current language agent simulations do not understand the relationships between users and items, leading to inaccurate user profiles and ineffective recommendations. In this work, we explore the utility of Knowledge Graphs (KGs), which contain extensive and reliable relationships between users and items, for recommendation. Our key insight is that the paths in a KG can capture complex relationships between users and items, eliciting the underlying reasons for user preferences and enriching user profiles. Leveraging this insight, we propose Knowledge Graph Enhanced Language Agents(KGLA), a framework that unifies language agents and KG for recommendation systems. In the simulated recommendation scenario, we position the user and item within the KG and integrate KG paths as natural language descriptions into the simulation. This allows language agents to interact with each other and discover sufficient rationale behind their interactions, making the simulation more accurate and aligned with real-world cases, thus improving recommendation performance. Our experimental results show that KGLA significantly improves recommendation performance (with a 33%-95% boost in NDCG@1 among three widely used benchmarks) compared to the previous best baseline method.
Rethinking Scientific Summarization Evaluation: Grounding Explainable Metrics on Facet-aware Benchmark
Chen, Xiuying, Wang, Tairan, Zhu, Qingqing, Guo, Taicheng, Gao, Shen, Lu, Zhiyong, Gao, Xin, Zhang, Xiangliang
The summarization capabilities of pretrained and large language models (LLMs) have been widely validated in general areas, but their use in scientific corpus, which involves complex sentences and specialized knowledge, has been less assessed. This paper presents conceptual and experimental analyses of scientific summarization, highlighting the inadequacies of traditional evaluation methods, such as $n$-gram, embedding comparison, and QA, particularly in providing explanations, grasping scientific concepts, or identifying key content. Subsequently, we introduce the Facet-aware Metric (FM), employing LLMs for advanced semantic matching to evaluate summaries based on different aspects. This facet-aware approach offers a thorough evaluation of abstracts by decomposing the evaluation task into simpler subtasks.Recognizing the absence of an evaluation benchmark in this domain, we curate a Facet-based scientific summarization Dataset (FD) with facet-level annotations. Our findings confirm that FM offers a more logical approach to evaluating scientific summaries. In addition, fine-tuned smaller models can compete with LLMs in scientific contexts, while LLMs have limitations in learning from in-context information in scientific domains. This suggests an area for future enhancement of LLMs.
SceMQA: A Scientific College Entrance Level Multimodal Question Answering Benchmark
Liang, Zhenwen, Guo, Kehan, Liu, Gang, Guo, Taicheng, Zhou, Yujun, Yang, Tianyu, Jiao, Jiajun, Pi, Renjie, Zhang, Jipeng, Zhang, Xiangliang
The paper introduces SceMQA, a novel benchmark for scientific multimodal question answering at the college entrance level. It addresses a critical educational phase often overlooked in existing benchmarks, spanning high school to pre-college levels. SceMQA focuses on core science subjects including Mathematics, Physics, Chemistry, and Biology. It features a blend of multiple-choice and free-response formats, ensuring a comprehensive evaluation of AI models' abilities. Additionally, our benchmark provides specific knowledge points for each problem and detailed explanations for each answer. SceMQA also uniquely presents problems with identical contexts but varied questions to facilitate a more thorough and accurate assessment of reasoning capabilities. In the experiment, we evaluate both open-source and close-source state-of-the-art Multimodal Large Language Models (MLLMs), across various experimental settings. The results show that further research and development are needed in developing more capable MLLM, as highlighted by only 50% to 60% accuracy achieved by the strongest models. Our benchmark and analysis will be available at https://scemqa.github.io/
Large Language Model based Multi-Agents: A Survey of Progress and Challenges
Guo, Taicheng, Chen, Xiuying, Wang, Yaqi, Chang, Ruidi, Pei, Shichao, Chawla, Nitesh V., Wiest, Olaf, Zhang, Xiangliang
Large Language Models (LLMs) have achieved remarkable success across a wide array of tasks. Due to the impressive planning and reasoning abilities of LLMs, they have been used as autonomous agents to do many tasks automatically. Recently, based on the development of using one LLM as a single planning or decision-making agent, LLM-based multi-agent systems have achieved considerable progress in complex problem-solving and world simulation. To provide the community with an overview of this dynamic field, we present this survey to offer an in-depth discussion on the essential aspects of multi-agent systems based on LLMs, as well as the challenges. Our goal is for readers to gain substantial insights on the following questions: What domains and environments do LLM-based multi-agents simulate? How are these agents profiled and how do they communicate? What mechanisms contribute to the growth of agents' capacities? For those interested in delving into this field of study, we also summarize the commonly used datasets or benchmarks for them to have convenient access. To keep researchers updated on the latest studies, we maintain an open-source GitHub repository, dedicated to outlining the research on LLM-based multi-agent systems.
What can Large Language Models do in chemistry? A comprehensive benchmark on eight tasks
Guo, Taicheng, Guo, Kehan, Nan, Bozhao, Liang, Zhenwen, Guo, Zhichun, Chawla, Nitesh V., Wiest, Olaf, Zhang, Xiangliang
Large Language Models (LLMs) with strong abilities in natural language processing tasks have emerged and have been applied in various kinds of areas such as science, finance and software engineering. However, the capability of LLMs to advance the field of chemistry remains unclear. In this paper, rather than pursuing state-of-the-art performance, we aim to evaluate capabilities of LLMs in a wide range of tasks across the chemistry domain. We identify three key chemistry-related capabilities including understanding, reasoning and explaining to explore in LLMs and establish a benchmark containing eight chemistry tasks. Our analysis draws on widely recognized datasets facilitating a broad exploration of the capacities of LLMs within the context of practical chemistry. Five LLMs (GPT-4, GPT-3.5, Davinci-003, Llama and Galactica) are evaluated for each chemistry task in zero-shot and few-shot in-context learning settings with carefully selected demonstration examples and specially crafted prompts. Our investigation found that GPT-4 outperformed other models and LLMs exhibit different competitive levels in eight chemistry tasks. In addition to the key findings from the comprehensive benchmark analysis, our work provides insights into the limitation of current LLMs and the impact of in-context learning settings on LLMs' performance across various chemistry tasks. The code and datasets used in this study are available at https://github.com/ChemFoundationModels/ChemLLMBench.
Few-shot News Recommendation via Cross-lingual Transfer
Guo, Taicheng, Yu, Lu, Shihada, Basem, Zhang, Xiangliang
The cold-start problem has been commonly recognized in recommendation systems and studied by following a general idea to leverage the abundant interaction records of warm users to infer the preference of cold users. However, the performance of these solutions is limited by the amount of records available from warm users to use. Thus, building a recommendation system based on few interaction records from a few users still remains a challenging problem for unpopular or early-stage recommendation platforms. This paper focuses on solving the few-shot recommendation problem for news recommendation based on two observations. First, news at different platforms (even in different languages) may share similar topics. Second, the user preference over these topics is transferable across different platforms. Therefore, we propose to solve the few-shot news recommendation problem by transferring the user-news preference from a many-shot source domain to a few-shot target domain. To bridge two domains that are even in different languages and without any overlapping users and news, we propose a novel unsupervised cross-lingual transfer model as the news encoder that aligns semantically similar news in two domains. A user encoder is constructed on top of the aligned news encoding and transfers the user preference from the source to target domain. Experimental results on two real-world news recommendation datasets show the superior performance of our proposed method on addressing few-shot news recommendation, comparing to the baselines.
Modeling non-uniform uncertainty in Reaction Prediction via Boosting and Dropout
Guo, Taicheng, Ma, Changsheng, Chen, Xiuying, Nan, Bozhao, Guo, Kehan, Pei, Shichao, Chawla, Nitesh V., Wiest, Olaf, Zhang, Xiangliang
Reaction prediction has been recognized as a critical task in synthetic chemistry, where the goal is to predict the outcome of a reaction based on the given reactants. With the widespread adoption of generative models, the Variational Autoencoder(VAE) framework has typically been employed to tackle challenges in reaction prediction, where the reactants are encoded as a condition for the decoder, which then generates the product. Despite effectiveness, these conditional VAE (CVAE) models still fail to adequately account for the inherent uncertainty in reaction prediction, which primarily stems from the stochastic reaction process. The principal limitations are twofold. Firstly, in these CVAE models, the prior is independent of the reactants, leading to a default wide and assumed uniform distribution variance of the generated product. Secondly, reactants with analogous molecular representations are presumed to undergo similar electronic transition processes, thereby producing similar products. This hinders the ability to model diverse reaction mechanisms effectively. Since the variance in outcomes is inherently non-uniform, we are thus motivated to develop a framework that generates reaction products with non-uniform uncertainty. Firstly, we eliminate the latent variable in previous CVAE models to mitigate uncontrol-label noise. Instead, we introduce randomness into product generation via boosting to ensemble diverse models and cover the range of potential outcomes, and through dropout to secure models with minor variations. Additionally, we design a ranking method to union the predictions from boosting and dropout, prioritizing the most plausible products. Experimental results on the largest reaction prediction benchmark USPTO-MIT show the superior performance of our proposed method in modeling the non-uniform uncertainty compared to baselines.