Goto

Collaborating Authors

 Guo, Liyong


CR-CTC: Consistency regularization on CTC for improved speech recognition

arXiv.org Artificial Intelligence

Connectionist Temporal Classification (CTC) is a widely used method for automatic speech recognition (ASR), renowned for its simplicity and computational efficiency. However, it often falls short in recognition performance. In this work, we propose the Consistency-Regularized CTC (CR-CTC), which enforces consistency between two CTC distributions obtained from different augmented views of the input speech mel-spectrogram. We provide in-depth insights into its essential behaviors from three perspectives: 1) it conducts self-distillation between random pairs of sub-models that process different augmented views; 2) it learns contextual representation through masked prediction for positions within time-masked regions, especially when we increase the amount of time masking; 3) it suppresses the extremely peaky CTC distributions, thereby reducing overfitting and improving the generalization ability. Extensive experiments on LibriSpeech, Aishell-1, and GigaSpeech datasets demonstrate the effectiveness of our CR-CTC. It significantly improves the CTC performance, achieving state-of-the-art results comparable to those attained by transducer or systems combining CTC and attention-based encoder-decoder (CTC/AED). We release our code at \url{https://github.com/k2-fsa/icefall}.


PromptASR for contextualized ASR with controllable style

arXiv.org Artificial Intelligence

Prompts are crucial to large language models as they provide context information such as topic or logical relationships. Inspired by this, we propose PromptASR, a framework that integrates prompts in end-to-end automatic speech recognition (E2E ASR) systems to achieve contextualized ASR with controllable style of transcriptions. Specifically, a dedicated text encoder encodes the text prompts and the encodings are injected into the speech encoder by cross-attending the features from two modalities. When using the ground truth text from preceding utterances as content prompt, the proposed system achieves 21.9% and 6.8% relative word error rate reductions on a book reading dataset and an in-house dataset compared to a baseline ASR system. The system can also take word-level biasing lists as prompt to improve recognition accuracy on rare words. An additional style prompt can be given to the text encoder and guide the ASR system to output different styles of transcriptions. The code is available at icefall.


Zipformer: A faster and better encoder for automatic speech recognition

arXiv.org Artificial Intelligence

The Conformer has become the most popular encoder model for automatic speech recognition (ASR). It adds convolution modules to a Transformer to learn both local and global dependencies. In this work we describe a faster, more memoryefficient, and better-performing Transformer, called Zipformer. Modeling changes include: 1) a U-Net-like encoder structure where middle stacks operate at lower frame rates; 2) reorganized block structure with more modules, within which we re-use attention weights for efficiency; 3) a modified form of LayerNorm called BiasNorm allows us to retain some length information; 4) new activation functions SwooshR and SwooshL work better than Swish. We also propose a new optimizer, called ScaledAdam, which scales the update by each tensor's current scale to keep the relative change about the same, and also explictly learns the parameter scale. It achieves faster convergence and better performance than Adam. Extensive experiments on LibriSpeech, Aishell-1, and WenetSpeech datasets demonstrate the effectiveness of our proposed Zipformer over other state-of-the-art ASR models. Our code is publicly available at https://github.com/k2-fsa/icefall. End-to-end models have achieved remarkable success in automatic speech recognition (ASR). An effective encoder architecture that performs temporal modeling on the speech sequence plays a vital role in end-to-end ASR models.


Blank-regularized CTC for Frame Skipping in Neural Transducer

arXiv.org Artificial Intelligence

Neural Transducer and connectionist temporal classification (CTC) are popular end-to-end automatic speech recognition systems. Due to their frame-synchronous design, blank symbols are introduced to address the length mismatch between acoustic frames and output tokens, which might bring redundant computation. Previous studies managed to accelerate the training and inference of neural Transducers by discarding frames based on the blank symbols predicted by a co-trained CTC. However, there is no guarantee that the co-trained CTC can maximize the ratio of blank symbols. This paper proposes two novel regularization methods to explicitly encourage more blanks by constraining the self-loop of non-blank symbols in the CTC. It is interesting to find that the frame reduction ratio of the neural Transducer can approach the theoretical boundary. Experiments on LibriSpeech corpus show that our proposed method accelerates the inference of neural Transducer by 4 times without sacrificing performance. Our work is open-sourced and publicly available https://github.com/k2-fsa/icefall.


Relate auditory speech to EEG by shallow-deep attention-based network

arXiv.org Artificial Intelligence

Electroencephalography (EEG) plays a vital role in detecting how brain responses to different stimulus. In this paper, we propose a novel Shallow-Deep Attention-based Network (SDANet) to classify the correct auditory stimulus evoking the EEG signal. It adopts the Attention-based Correlation Module (ACM) to discover the connection between auditory speech and EEG from global aspect, and the Shallow-Deep Similarity Classification Module (SDSCM) to decide the classification result via the embeddings learned from the shallow and deep layers. Moreover, various training strategies and data augmentation are used to boost the model robustness. Experiments are conducted on the dataset provided by Auditory EEG challenge (ICASSP Signal Processing Grand Challenge 2023). Results show that the proposed model has a significant gain over the baseline on the match-mismatch track.


Exploring Representation Learning for Small-Footprint Keyword Spotting

arXiv.org Artificial Intelligence

In this paper, we investigate representation learning for low-resource keyword spotting (KWS). The main challenges of KWS are limited labeled data and limited available device resources. To address those challenges, we explore representation learning for KWS by self-supervised contrastive learning and self-training with pretrained model. First, local-global contrastive siamese networks (LGCSiam) are designed to learn similar utterance-level representations for similar audio samplers by proposed local-global contrastive loss without requiring ground-truth. Second, a self-supervised pretrained Wav2Vec 2.0 model is applied as a constraint module (WVC) to force the KWS model to learn frame-level acoustic representations. By the LGCSiam and WVC modules, the proposed small-footprint KWS model can be pretrained with unlabeled data. Experiments on speech commands dataset show that the self-training WVC module and the self-supervised LGCSiam module significantly improve accuracy, especially in the case of training on a small labeled dataset.


Fast and parallel decoding for transducer

arXiv.org Artificial Intelligence

The transducer architecture is becoming increasingly popular in the field of speech recognition, because it is naturally streaming as well as high in accuracy. One of the drawbacks of transducer is that it is difficult to decode in a fast and parallel way due to an unconstrained number of symbols that can be emitted per time step. In this work, we introduce a constrained version of transducer loss to learn strictly monotonic alignments between the sequences; we also improve the standard greedy search and beam search algorithms by limiting the number of symbols that can be emitted per time step in transducer decoding, making it more efficient to decode in parallel with batches. Furthermore, we propose an finite state automaton-based (FSA) parallel beam search algorithm that can run with graphs on GPU efficiently. The experiment results show that we achieve slight word error rate (WER) improvement as well as significant speedup in decoding. Our work is open-sourced and publicly available\footnote{https://github.com/k2-fsa/icefall}.