Guo, Hangyu
A Comprehensive Survey on Long Context Language Modeling
Liu, Jiaheng, Zhu, Dawei, Bai, Zhiqi, He, Yancheng, Liao, Huanxuan, Que, Haoran, Wang, Zekun, Zhang, Chenchen, Zhang, Ge, Zhang, Jiebin, Zhang, Yuanxing, Chen, Zhuo, Guo, Hangyu, Li, Shilong, Liu, Ziqiang, Shan, Yong, Song, Yifan, Tian, Jiayi, Wu, Wenhao, Zhou, Zhejian, Zhu, Ruijie, Feng, Junlan, Gao, Yang, He, Shizhu, Li, Zhoujun, Liu, Tianyu, Meng, Fanyu, Su, Wenbo, Tan, Yingshui, Wang, Zili, Yang, Jian, Ye, Wei, Zheng, Bo, Zhou, Wangchunshu, Huang, Wenhao, Li, Sujian, Zhang, Zhaoxiang
Efficient processing of long contexts has been a persistent pursuit in Natural Language Processing. With the growing number of long documents, dialogues, and other textual data, it is important to develop Long Context Language Models (LCLMs) that can process and analyze extensive inputs in an effective and efficient way. In this paper, we present a comprehensive survey on recent advances in long-context modeling for large language models. Our survey is structured around three key aspects: how to obtain effective and efficient LCLMs, how to train and deploy LCLMs efficiently, and how to evaluate and analyze LCLMs comprehensively. For the first aspect, we discuss data strategies, architectural designs, and workflow approaches oriented with long context processing. For the second aspect, we provide a detailed examination of the infrastructure required for LCLM training and inference. For the third aspect, we present evaluation paradigms for long-context comprehension and long-form generation, as well as behavioral analysis and mechanism interpretability of LCLMs. Beyond these three key aspects, we thoroughly explore the diverse application scenarios where existing LCLMs have been deployed and outline promising future development directions. This survey provides an up-to-date review of the literature on long-context LLMs, which we wish to serve as a valuable resource for both researchers and engineers. An associated GitHub repository collecting the latest papers and repos is available at: \href{https://github.com/LCLM-Horizon/A-Comprehensive-Survey-For-Long-Context-Language-Modeling}{\color[RGB]{175,36,67}{LCLM-Horizon}}.
WiS Platform: Enhancing Evaluation of LLM-Based Multi-Agent Systems Through Game-Based Analysis
Hu, Chengwei, Zheng, Jianhui, He, Yancheng, Guo, Hangyu, Jiang, Junguang, Zhu, Han, Sun, Kai, Jiang, Yuning, Su, Wenbo, Zheng, Bo
Recent advancements in autonomous multi-agent systems (MAS) based on large language models (LLMs) have enhanced the application scenarios and improved the capability of LLMs to handle complex tasks. Despite demonstrating effectiveness, existing studies still evidently struggle to evaluate, analysis, and reproducibility of LLM-based MAS. In this paper, to facilitate the research on LLM-based MAS, we introduce an open, scalable, and real-time updated platform for accessing and analyzing the LLM-based MAS based on the games Who is Spy?" (WiS). Our platform is featured with three main worths: (1) a unified model evaluate interface that supports models available on Hugging Face; (2) real-time updated leaderboard for model evaluation; (3) a comprehensive evaluation covering game-winning rates, attacking, defense strategies, and reasoning of LLMs. To rigorously test WiS, we conduct extensive experiments coverage of various open- and closed-source LLMs, we find that different agents exhibit distinct and intriguing behaviors in the game. The experimental results demonstrate the effectiveness and efficiency of our platform in evaluating LLM-based MAS. Our platform and its documentation are publicly available at \url{https://whoisspy.ai/}
Chinese SimpleQA: A Chinese Factuality Evaluation for Large Language Models
He, Yancheng, Li, Shilong, Liu, Jiaheng, Tan, Yingshui, Wang, Weixun, Huang, Hui, Bu, Xingyuan, Guo, Hangyu, Hu, Chengwei, Zheng, Boren, Lin, Zhuoran, Liu, Xuepeng, Sun, Dekai, Lin, Shirong, Zheng, Zhicheng, Zhu, Xiaoyong, Su, Wenbo, Zheng, Bo
New LLM evaluation benchmarks are important to align with the rapid development of Large Language Models (LLMs). In this work, we present Chinese SimpleQA, the first comprehensive Chinese benchmark to evaluate the factuality ability of language models to answer short questions, and Chinese SimpleQA mainly has five properties (i.e., Chinese, Diverse, High-quality, Static, Easy-to-evaluate). Specifically, first, we focus on the Chinese language over 6 major topics with 99 diverse subtopics. Second, we conduct a comprehensive quality control process to achieve high-quality questions and answers, where the reference answers are static and cannot be changed over time. Third, following SimpleQA, the questions and answers are very short, and the grading process is easy-to-evaluate based on OpenAI API. Based on Chinese SimpleQA, we perform a comprehensive evaluation on the factuality abilities of existing LLMs. Finally, we hope that Chinese SimpleQA could guide the developers to better understand the Chinese factuality abilities of their models and facilitate the growth of foundation models.
2D-DPO: Scaling Direct Preference Optimization with 2-Dimensional Supervision
Li, Shilong, He, Yancheng, Huang, Hui, Bu, Xingyuan, Liu, Jiaheng, Guo, Hangyu, Wang, Weixun, Gu, Jihao, Su, Wenbo, Zheng, Bo
Recent advancements in Direct Preference Optimization (DPO) have significantly enhanced the alignment of Large Language Models (LLMs) with human preferences, owing to its simplicity and effectiveness. However, existing methods typically optimize a scalar score or ranking reward, thereby overlooking the multi-dimensional nature of human preferences. In this work, we propose to extend the preference of DPO to two dimensions: segments and aspects. We first introduce a 2D supervision dataset called HelpSteer-2D. For the segment dimension, we divide the response into sentences and assign scores to each segment. For the aspect dimension, we meticulously design several criteria covering the response quality rubrics. With the 2-dimensional signals as feedback, we develop a 2D-DPO framework, decomposing the overall objective into multi-segment and multi-aspect objectives. Extensive experiments on popular benchmarks demonstrate that 2D-DPO performs better than methods that optimize for scalar or 1-dimensional preferences.
MTU-Bench: A Multi-granularity Tool-Use Benchmark for Large Language Models
Wang, Pei, Wu, Yanan, Wang, Zekun, Liu, Jiaheng, Song, Xiaoshuai, Peng, Zhongyuan, Deng, Ken, Zhang, Chenchen, Wang, Jiakai, Peng, Junran, Zhang, Ge, Guo, Hangyu, Zhang, Zhaoxiang, Su, Wenbo, Zheng, Bo
Large Language Models (LLMs) have displayed massive improvements in reasoning and decision-making skills and can hold natural conversations with users. Recently, many tool-use benchmark datasets have been proposed. However, existing datasets have the following limitations: (1). Insufficient evaluation scenarios (e.g., only cover limited tool-use scenes). (2). Extensive evaluation costs (e.g., GPT API costs). To address these limitations, in this work, we propose a multi-granularity tool-use benchmark for large language models called MTU-Bench. For the "multi-granularity" property, our MTU-Bench covers five tool usage scenes (i.e., single-turn and single-tool, single-turn and multiple-tool, multiple-turn and single-tool, multiple-turn and multiple-tool, and out-of-distribution tasks). Besides, all evaluation metrics of our MTU-Bench are based on the prediction results and the ground truth without using any GPT or human evaluation metrics. Moreover, our MTU-Bench is collected by transforming existing high-quality datasets to simulate real-world tool usage scenarios, and we also propose an instruction dataset called MTU-Instruct data to enhance the tool-use abilities of existing LLMs. Comprehensive experimental results demonstrate the effectiveness of our MTU-Bench. Code and data will be released at https: //github.com/MTU-Bench-Team/MTU-Bench.git.
ING-VP: MLLMs cannot Play Easy Vision-based Games Yet
Zhang, Haoran, Guo, Hangyu, Guo, Shuyue, Cao, Meng, Huang, Wenhao, Liu, Jiaheng, Zhang, Ge
As multimodal large language models (MLLMs) continue to demonstrate increasingly competitive performance across a broad spectrum of tasks, more intricate and comprehensive benchmarks have been developed to assess these cutting-edge models. These benchmarks introduce new challenges to core capabilities such as perception, reasoning, and planning. However, existing multimodal benchmarks fall short in providing a focused evaluation of multi-step planning based on spatial relationships in images. To bridge this gap, we present ING-VP, the first INteractive Game-based Vision Planning benchmark, specifically designed to evaluate the spatial imagination and multi-step reasoning abilities of MLLMs. ING-VP features 6 distinct games, encompassing 300 levels, each with 6 unique configurations. A single model engages in over 60,000 rounds of interaction. The benchmark framework allows for multiple comparison settings, including image-text vs. text-only inputs, single-step vs. multi-step reasoning, and with-history vs. without-history conditions, offering valuable insights into the model's capabilities. We evaluated numerous state-of-the-art MLLMs, with the highest-performing model, Claude-3.5 Sonnet, achieving an average accuracy of only 3.37%, far below the anticipated standard. This work aims to provide a specialized evaluation framework to drive advancements in MLLMs' capacity for complex spatial reasoning and planning. The code is publicly available at https://github.com/Thisisus7/ING-VP.git.
OmniBench: Towards The Future of Universal Omni-Language Models
Li, Yizhi, Zhang, Ge, Ma, Yinghao, Yuan, Ruibin, Zhu, Kang, Guo, Hangyu, Liang, Yiming, Liu, Jiaheng, Wang, Zekun, Yang, Jian, Wu, Siwei, Qu, Xingwei, Shi, Jinjie, Zhang, Xinyue, Yang, Zhenzhu, Wang, Xiangzhou, Zhang, Zhaoxiang, Liu, Zachary, Benetos, Emmanouil, Huang, Wenhao, Lin, Chenghua
Recent advancements in multimodal large language models (MLLMs) have aimed to integrate and interpret data across diverse modalities. However, the capacity of these models to concurrently process and reason about multiple modalities remains inadequately explored, partly due to the lack of comprehensive modality-wise benchmarks. We introduce OmniBench, a novel benchmark designed to rigorously evaluate models' ability to recognize, interpret, and reason across visual, acoustic, and textual inputs simultaneously. We define models capable of such tri-modal processing as omni-language models (OLMs). OmniBench is distinguished by high-quality human annotations, ensuring that accurate responses require integrated understanding and reasoning across all three modalities. Our main findings reveal that: i) most OLMs exhibit critical limitations in instruction-following and reasoning capabilities within tri-modal contexts; and ii) most baselines models perform poorly (below 50\% accuracy) even when provided with alternative textual representations of images or/and audio. These results suggest that the ability to construct a consistent context from text, image, and audio is often overlooked in existing MLLM training paradigms. To address this gap, we curate an instruction tuning dataset of 84.5K training samples, OmniInstruct, for training OLMs to adapt to multimodal contexts. We advocate for future research to focus on developing more robust tri-modal integration techniques and training strategies to enhance OLM performance across diverse modalities. The codes and live leaderboard could be found at https://m-a-p.ai/OmniBench.
GeoGPT4V: Towards Geometric Multi-modal Large Language Models with Geometric Image Generation
Cai, Shihao, Bao, Keqin, Guo, Hangyu, Zhang, Jizhi, Song, Jun, Zheng, Bo
Large language models have seen widespread adoption in math problem-solving. However, in geometry problems that usually require visual aids for better understanding, even the most advanced multi-modal models currently still face challenges in effectively using image information. High-quality data is crucial for enhancing the geometric capabilities of multi-modal models, yet existing open-source datasets and related efforts are either too challenging for direct model learning or suffer from misalignment between text and images. To overcome this issue, we introduce a novel pipeline that leverages GPT-4 and GPT-4V to generate relatively basic geometry problems with aligned text and images, facilitating model learning. We have produced a dataset of 4.9K geometry problems and combined it with 19K open-source data to form our GeoGPT4V dataset. Experimental results demonstrate that the GeoGPT4V dataset significantly improves the geometry performance of various models on the MathVista and MathVision benchmarks. The code is available at https://github.com/Lanyu0303/GeoGPT4V_Project
Images are Achilles' Heel of Alignment: Exploiting Visual Vulnerabilities for Jailbreaking Multimodal Large Language Models
Li, Yifan, Guo, Hangyu, Zhou, Kun, Zhao, Wayne Xin, Wen, Ji-Rong
In this paper, we study the harmlessness alignment problem of multimodal large language models (MLLMs). We conduct a systematic empirical analysis of the harmlessness performance of representative MLLMs and reveal that the image input poses the alignment vulnerability of MLLMs. Inspired by this, we propose a novel jailbreak method named HADES, which hides and amplifies the harmfulness of the malicious intent within the text input, using meticulously crafted images. Experimental results show that HADES can effectively jailbreak existing MLLMs, which achieves an average Attack Success Rate (ASR) of 90.26% for LLaVA-1.5 and 71.60% for Gemini Pro Vision. Our code and data are available at https://github.com/RUCAIBox/HADES. Warning: this paper contains example data that may be offensive.
What Makes for Good Visual Instructions? Synthesizing Complex Visual Reasoning Instructions for Visual Instruction Tuning
Du, Yifan, Guo, Hangyu, Zhou, Kun, Zhao, Wayne Xin, Wang, Jinpeng, Wang, Chuyuan, Cai, Mingchen, Song, Ruihua, Wen, Ji-Rong
Visual instruction tuning is an essential approach to improving the zero-shot generalization capability of Multi-modal Large Language Models (MLLMs). A surge of visual instruction datasets with various focuses and characteristics have been proposed recently, enabling MLLMs to achieve surprising results on evaluation benchmarks. To develop more capable MLLMs, in this paper, we aim to investigate a more fundamental question: ``what makes for good visual instructions?''. By conducting a comprehensive empirical study, we find that instructions focused on complex visual reasoning tasks are particularly effective in improving the performance of MLLMs on evaluation benchmarks. Building upon this finding, we design a systematic approach to automatically creating high-quality complex visual reasoning instructions. Our approach employs a synthesis-complication-reformulation paradigm, leveraging multiple stages to gradually increase the complexity of the instructions while guaranteeing quality. Based on this approach, we create the synthetic visual reasoning instruction dataset consisting of 32K examples, namely ComVint, and fine-tune four MLLMs on it. Experimental results demonstrate that our dataset consistently enhances the performance of all the compared MLLMs, e.g., improving the performance of MiniGPT-4 and BLIP-2 on MME-Cognition by 32.6% and 28.8%, respectively. Our code and data are publicly available at the link: https://github.com/RUCAIBox/ComVint.