Goto

Collaborating Authors

 Guo, Danhuai


Research on Foundation Model for Spatial Data Intelligence: China's 2024 White Paper on Strategic Development of Spatial Data Intelligence

arXiv.org Artificial Intelligence

Research status and development trends; on this basis, this report proposes three major challenges faced by large spatial data intelligent models today. This report focuses on the current research status of spatial data intelligent large-scale models and sorts out the research progress in four major thematic areas of spatial data intelligent large-scale models: cities, air and space remote sensing, geography, and transportation. This report systematically introduces the key technologies, characteristics and advantages, research status, future development and other core information of spatial data intelligent large models, involving spatiotemporal big data platforms, distributed computing, 3D virtual reality, space The basic performance of large models such as analysis and visualization, as well as the complex spatial comprehensive performance of large models such as geospatial intelligent computing, deep learning, high-performance processing of big data, geographical knowledge graphs, and geographical intelligent multi-scenario simulation, analyze the application of the above key technologies in spatial data The location and role of smart large models.


DeepSSN: a deep convolutional neural network to assess spatial scene similarity

arXiv.org Artificial Intelligence

Spatial-query-by-sketch is an intuitive tool to explore human spatial knowledge about geographic environments and to support communication with scene database queries. However, traditional sketch-based spatial search methods perform insufficiently due to their inability to find hidden multi-scale map features from mental sketches. In this research, we propose a deep convolutional neural network, namely Deep Spatial Scene Network (DeepSSN), to better assess the spatial scene similarity. In DeepSSN, a triplet loss function is designed as a comprehensive distance metric to support the similarity assessment. A positive and negative example mining strategy using qualitative constraint networks in spatial reasoning is designed to ensure a consistently increasing distinction of triplets during the training process. Moreover, we develop a prototype spatial scene search system using the proposed DeepSSN, in which the users input spatial query via sketch maps and the system can automatically augment the sketch training data. The proposed model is validated using multi-source conflated map data including 131,300 labeled scene samples after data augmentation. The empirical results demonstrate that the DeepSSN outperforms baseline methods including k-nearest-neighbors, multilayer perceptron, AlexNet, DenseNet, and ResNet using mean reciprocal rank and precision metrics. This research advances geographic information retrieval studies by introducing a novel deep learning method tailored to spatial scene queries.