Goto

Collaborating Authors

 Guo, Cheng


FinRobot: An Open-Source AI Agent Platform for Financial Applications using Large Language Models

arXiv.org Artificial Intelligence

As financial institutions and professionals increasingly incorporate Large Language Models (LLMs) into their workflows, substantial barriers, including proprietary data and specialized knowledge, persist between the finance sector and the AI community. These challenges impede the AI community's ability to enhance financial tasks effectively. Acknowledging financial analysis's critical role, we aim to devise financial-specialized LLM-based toolchains and democratize access to them through open-source initiatives, promoting wider AI adoption in financial decision-making. In this paper, we introduce FinRobot, a novel open-source AI agent platform supporting multiple financially specialized AI agents, each powered by LLM. Specifically, the platform consists of four major layers: 1) the Financial AI Agents layer that formulates Financial Chain-of-Thought (CoT) by breaking sophisticated financial problems down into logical sequences; 2) the Financial LLM Algorithms layer dynamically configures appropriate model application strategies for specific tasks; 3) the LLMOps and DataOps layer produces accurate models by applying training/fine-tuning techniques and using task-relevant data; 4) the Multi-source LLM Foundation Models layer that integrates various LLMs and enables the above layers to access them directly. Finally, FinRobot provides hands-on for both professional-grade analysts and laypersons to utilize powerful AI techniques for advanced financial analysis. We open-source FinRobot at \url{https://github.com/AI4Finance-Foundation/FinRobot}.


Online Action Recognition for Human Risk Prediction with Anticipated Haptic Alert via Wearables

arXiv.org Artificial Intelligence

This paper proposes a framework that combines online human state estimation, action recognition and motion prediction to enable early assessment and prevention of worker biomechanical risk during lifting tasks. The framework leverages the NIOSH index to perform online risk assessment, thus fitting real-time applications. In particular, the human state is retrieved via inverse kinematics/dynamics algorithms from wearable sensor data. Human action recognition and motion prediction are achieved by implementing an LSTM-based Guided Mixture of Experts architecture, which is trained offline and inferred online. With the recognized actions, a single lifting activity is divided into a series of continuous movements and the Revised NIOSH Lifting Equation can be applied for risk assessment. Moreover, the predicted motions enable anticipation of future risks. A haptic actuator, embedded in the wearable system, can alert the subject of potential risk, acting as an active prevention device. The performance of the proposed framework is validated by executing real lifting tasks, while the subject is equipped with the iFeel wearable system.


Efficient Representation of Natural Image Patches

arXiv.org Artificial Intelligence

In the complex domain of neural information processing, discerning fundamental principles from ancillary details remains a significant challenge. While there is extensive knowledge about the anatomy and physiology of the early visual system, a comprehensive computational theory remains elusive. Can we gain insights into the underlying principles of a biological system by abstracting away from its detailed implementation and focusing on the fundamental problems that the system is designed to solve? Utilizing an abstract model based on minimal yet realistic assumptions, we show how to achieve the early visual system's two ultimate objectives: efficient information transmission and sensor probability distribution modeling. We show that optimizing for information transmission does not yield optimal probability distribution modeling. We illustrate, using a two-pixel (2D) system and image patches, that an efficient representation can be realized via nonlinear population code driven by two types of biologically plausible loss functions that depend solely on output. After unsupervised learning, our abstract IPU model bears remarkable resemblances to biological systems, despite not mimicking many features of real neurons, such as spiking activity. A preliminary comparison with a contemporary deep learning model suggests that the IPU model offers a significant efficiency advantage. Our model provides novel insights into the computational theory of early visual systems as well as a potential new approach to enhance the efficiency of deep learning models.