Guntupalli, J. Swaroop
Distributional Diffusion Models with Scoring Rules
De Bortoli, Valentin, Galashov, Alexandre, Guntupalli, J. Swaroop, Zhou, Guangyao, Murphy, Kevin, Gretton, Arthur, Doucet, Arnaud
Diffusion models generate high-quality synthetic data. They operate by defining a continuous-time forward process which gradually adds Gaussian noise to data until fully corrupted. The corresponding reverse process progressively "denoises" a Gaussian sample into a sample from the data distribution. However, generating high-quality outputs requires many discretization steps to obtain a faithful approximation of the reverse process. This is expensive and has motivated the development of many acceleration methods. We propose to accomplish sample generation by learning the posterior {\em distribution} of clean data samples given their noisy versions, instead of only the mean of this distribution. This allows us to sample from the probability transitions of the reverse process on a coarse time scale, significantly accelerating inference with minimal degradation of the quality of the output. This is accomplished by replacing the standard regression loss used to estimate conditional means with a scoring rule. We validate our method on image and robot trajectory generation, where we consistently outperform standard diffusion models at few discretization steps.
Diffusion Model Predictive Control
Zhou, Guangyao, Swaminathan, Sivaramakrishnan, Raju, Rajkumar Vasudeva, Guntupalli, J. Swaroop, Lehrach, Wolfgang, Ortiz, Joseph, Dedieu, Antoine, Lázaro-Gredilla, Miguel, Murphy, Kevin
We propose Diffusion Model Predictive Control (D-MPC), a novel MPC approach that learns a multi-step action proposal and a multi-step dynamics model, both using diffusion models, and combines them for use in online MPC. On the popular D4RL benchmark, we show performance that is significantly better than existing model-based offline planning methods using MPC and competitive with state-of-the-art (SOTA) model-based and model-free reinforcement learning methods. We additionally illustrate D-MPC's ability to optimize novel reward functions at run time and adapt to novel dynamics, and highlight its advantages compared to existing diffusion-based planning baselines.
Graph schemas as abstractions for transfer learning, inference, and planning
Guntupalli, J. Swaroop, Raju, Rajkumar Vasudeva, Kushagra, Shrinu, Wendelken, Carter, Sawyer, Danny, Deshpande, Ishan, Zhou, Guangyao, Lázaro-Gredilla, Miguel, George, Dileep
Transferring latent structure from one environment or problem to another is a mechanism by which humans and animals generalize with very little data. Inspired by cognitive and neurobiological insights, we propose graph schemas as a mechanism of abstraction for transfer learning. Graph schemas start with latent graph learning where perceptually aliased observations are disambiguated in the latent space using contextual information. Latent graph learning is also emerging as a new computational model of the hippocampus to explain map learning and transitive inference. Our insight is that a latent graph can be treated as a flexible template -- a schema -- that models concepts and behaviors, with slots that bind groups of latent nodes to the specific observations or groundings. By treating learned latent graphs (schemas) as prior knowledge, new environments can be quickly learned as compositions of schemas and their newly learned bindings. We evaluate graph schemas on two previously published challenging tasks: the memory & planning game and one-shot StreetLearn, which are designed to test rapid task solving in novel environments. Graph schemas can be learned in far fewer episodes than previous baselines, and can model and plan in a few steps in novel variations of these tasks. We also demonstrate learning, matching, and reusing graph schemas in more challenging 2D and 3D environments with extensive perceptual aliasing and size variations, and show how different schemas can be composed to model larger and more complex environments. To summarize, our main contribution is a unified system, inspired and grounded in cognitive science, that facilitates rapid transfer learning of new environments using schemas via map-induction and composition that handles perceptual aliasing.
Beyond imitation: Zero-shot task transfer on robots by learning concepts as cognitive programs
Lázaro-Gredilla, Miguel, Lin, Dianhuan, Guntupalli, J. Swaroop, George, Dileep
Humans can infer concepts from image pairs and apply those in the physical world in a completely different setting, enabling tasks like IKEA assembly from diagrams. If robots could represent and infer high-level concepts, it would significantly improve their ability to understand our intent and to transfer tasks between different environments. To that end, we introduce a computational framework that replicates aspects of human concept learning. Concepts are represented as programs on a novel computer architecture consisting of a visual perception system, working memory, and action controller. The instruction set of this "cognitive computer" has commands for parsing a visual scene, directing gaze and attention, imagining new objects, manipulating the contents of a visual working memory, and controlling arm movement. Inferring a concept corresponds to inducing a program that can transform the input to the output. Some concepts require the use of imagination and recursion. Previously learned concepts simplify the learning of subsequent more elaborate concepts, and create a hierarchy of abstractions. We demonstrate how a robot can use these abstractions to interpret novel concepts presented to it as schematic images, and then apply those concepts in dramatically different situations. By bringing cognitive science ideas on mental imagery, perceptual symbols, embodied cognition, and deictic mechanisms into the realm of machine learning, our work brings us closer to the goal of building robots that have interpretable representations and commonsense.