Goto

Collaborating Authors

 Gunraj, Hayden


Explaining Explainability: Towards Deeper Actionable Insights into Deep Learning through Second-order Explainability

arXiv.org Artificial Intelligence

Explainability plays a crucial role in providing a more comprehensive understanding of deep learning models' behaviour. This allows for thorough validation of the model's performance, ensuring that its decisions are based on relevant visual indicators and not biased toward irrelevant patterns existing in training data. However, existing methods provide only instance-level explainability, which requires manual analysis of each sample. Such manual review is time-consuming and prone to human biases. To address this issue, the concept of second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level. SOXAI automates the analysis of the connections between quantitative explanations and dataset biases by identifying prevalent concepts. In this work, we explore the use of this higher-level interpretation of a deep neural network's behaviour to allows us to "explain the explainability" for actionable insights. Specifically, we demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.


MMRNet: Improving Reliability for Multimodal Object Detection and Segmentation for Bin Picking via Multimodal Redundancy

arXiv.org Artificial Intelligence

Recently, there has been tremendous interest in industry 4.0 infrastructure to address labor shortages in global supply chains. Deploying artificial intelligence-enabled robotic bin picking systems in real world has become particularly important for reducing stress and physical demands of workers while increasing speed and efficiency of warehouses. To this end, artificial intelligence-enabled robotic bin picking systems may be used to automate order picking, but with the risk of causing expensive damage during an abnormal event such as sensor failure. As such, reliability becomes a critical factor for translating artificial intelligence research to real world applications and products. In this paper, we propose a reliable object detection and segmentation system with MultiModal Redundancy (MMRNet) for tackling object detection and segmentation for robotic bin picking using data from different modalities. This is the first system that introduces the concept of multimodal redundancy to address sensor failure issues during deployment. In particular, we realize the multimodal redundancy framework with a gate fusion module and dynamic ensemble learning. Finally, we present a new label-free multi-modal consistency (MC) score that utilizes the output from all modalities to measure the overall system output reliability and uncertainty. Through experiments, we demonstrate that in an event of missing modality, our system provides a much more reliable performance compared to baseline models. We also demonstrate that our MC score is a more reliability indicator for outputs during inference time compared to the model generated confidence scores that are often over-confident.