Goto

Collaborating Authors

 Gunning, David


Open-Domain Conversational Agents: Current Progress, Open Problems, and Future Directions

arXiv.org Artificial Intelligence

Further, we discuss only open academic research with entertaining wit and knowledge while making others feel reproducible published results, hence we will not address heard. The breadth of possible conversation topics and lack much of the considerable work that has been put into building of a well-defined objective make it challenging to define a commercial systems, where methods, data and results roadmap towards training a good conversational agent, or are not in the public domain. Finally, given that we focus on chatbot. Despite recent progress across the board (Adiwardana open-domain conversation, we do not focus on specific goaloriented et al., 2020; Roller et al., 2020), conversational agents techniques; we also do not cover spoken dialogue in are still incapable of carrying an open-domain conversation this work, focusing on text and image input/output only. For that remains interesting, consistent, accurate, and reliably more general recent surveys, see Gao et al. (2019); Jurafsky well-behaved (e.g., not offensive) while navigating a variety and Martin (2019); Huang, Zhu, and Gao (2020). of topics. Traditional task-oriented dialogue systems rely on slotfilling and structured modules (e.g., Young et al. (2013); Gao et al. (2019); Jurafsky and Martin (2019)).


Machine Common Sense Concept Paper

arXiv.org Artificial Intelligence

This paper summarizes some of the technical background, research ideas, and possible development strategies for achieving machine common sense. Machine common sense has long been a critical-but-missing component of Artificial Intelligence (AI). Recent advances in machine learning have resulted in new AI capabilities, but in all of these applications, machine reasoning is narrow and highly specialized. Developers must carefully train or program systems for every situation. General commonsense reasoning remains elusive. The absence of common sense prevents intelligent systems from understanding their world, behaving reasonably in unforeseen situations, communicating naturally with people, and learning from new experiences. Its absence is perhaps the most significant barrier between the narrowly focused AI applications we have today and the more general, human-like AI systems we would like to build in the future. Machine common sense remains a broad, potentially unbounded problem in AI. There are a wide range of strategies that could be employed to make progress on this difficult challenge. This paper discusses two diverse strategies for focusing development on two different machine commonsense services: (1) a service that learns from experience, like a child, to construct computational models that mimic the core domains of child cognition for objects (intuitive physics), agents (intentional actors), and places (spatial navigation); and (2) service that learns from reading the Web, like a research librarian, to construct a commonsense knowledge repository capable of answering natural language and image-based questions about commonsense phenomena.


Introduction to the Special Issue on Innovative Applications of Artificial Intelligence 2015

AI Magazine

This issue features expanded versions of articles selected from the 2015 AAAI Conference on Innovative Applications of Artificial Intelligence held in Austin, Texas. We present a selection of four articles describing deployed applications plus two more articles that discuss work on emerging applications.


Introduction to the Special Issue on Innovative Applications of Artificial Intelligence 2015

AI Magazine

The 2015 conference continued the tradition with a selection of 6 deployed applications describing systems in use by their intended end users, 13 emerging applications describing works in progress, and three papers in a new category for challenge problems. In the first article, Activity Planning for a Lunar Orbital Mission, John Bresina describes a deployed application of current planning technology in the context of a NASA mission called LADEE (Lunar Atmospheric and Dust Environment Explorer). Bresina presents an approach taken to reduce the complexity of the activity-planning task in order to perform it effectively under the time pressures imposed by the mission requirements. One key aspect of this approach is the design of the activity-planning process based on principles of problem decomposition and planning abstraction levels. The second key aspect is the mixed-initiative system developed for this task, the LADEE activity scheduling system (LASS). The primary challenge for LASS was representing and managing the science constraints that were tied to key points in the spacecraft's orbit, given their dynamic nature due to the continually updated orbit determination solution. In our second article, Helping Novices Avoid the Hazards of Data: Leveraging Ontologies to Improve Model Generalization Automatically with Online Data Source, Sasin Janpuangtong and Dylan Shell describe an emerging application of an endto-end learning framework for large-scale data analytics that allows a novice to create models from data easily by helping structure the model-building process.


Introduction to the Special Issue on Innovative Applications of Artificial Intelligence 2014

AI Magazine

This issue features expanded versions of articles selected from the 2014 AAAI Conference on Innovative Applications of Artificial Intelligence held in Quebec City, Canada. We present a selection of four articles describing deployed applications plus two more articles that discuss work on emerging applications.


Introduction to the Special Issue on Innovative Applications of Artificial Intelligence 2014

AI Magazine

This issue features expanded versions of articles selected from the 2014 AAAI Conference on Innovative Applications of Artificial Intelligence held in Quebec City, Canada. We present a selection of four articles describing deployed applications plus two more articles that discuss work on emerging applications.


Introduction to the Special Issue on Innovative Applications of Artificial Intelligence 2014

AI Magazine

This year's special issue on innovative applications features articles describing four deployed and two emerging applications. The articles include three different types of recommender systems, which may be as much of a critique of the role of technology in society as it is an indication of recent research trends. Modern technology provides us with access to an increasingly overwhelming array of choices ranging from dating options to software capabilities to movies. However, as a society, we prefer not to turn the power of choice over to an automated system, thereby creating demand for AIbased technologies such as recommenders.


Introduction to the Special Issue on Question Answering

AI Magazine

This special issue issue of AI Magazine presents six articles on some of the most interesting question answering systems in development today. Included are articles on Project, the Semantic Research, Watson, True Knowledge, and TextRunner (University of Washington's clever use of statistical NL techniques to answer questions across the open web).


Project Halo Update--Progress Toward Digital Aristotle

AI Magazine

In the winter, 2004 issue of AI Magazine, we reported Vulcan Inc.'s first step toward creating a question-answering system called "Digital Aristotle." The goal of that first step was to assess the state of the art in applied Knowledge Representation and Reasoning (KRR) by asking AI experts to represent 70 pages from the advanced placement (AP) chemistry syllabus and to deliver knowledge-based systems capable of answering questions from that syllabus. This paper reports the next step toward realizing a Digital Aristotle: we present the design and evaluation results for a system called AURA, which enables domain experts in physics, chemistry, and biology to author a knowledge base and that then allows a different set of users to ask novel questions against that knowledge base. These results represent a substantial advance over what we reported in 2004, both in the breadth of covered subjects and in the provision of sophisticated technologies in knowledge representation and reasoning, natural language processing, and question answering to domain experts and novice users.


Introduction to the Special Issue on Question Answering

AI Magazine

This special issue issue of AI Magazine presents six articles on some of the most interesting question answering systems in development today. Included are articles on Project, the Semantic Research, Watson, True Knowledge, and TextRunner (University of Washington’s clever use of statistical NL techniques to answer questions across the open web).