Goto

Collaborating Authors

 Gunnar Raetsch



Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees

Neural Information Processing Systems

Greedy optimization methods such as Matching Pursuit (MP) and Frank-Wolfe (FW) algorithms regained popularity in recent years due to their simplicity, effectiveness and theoretical guarantees. MP and FW address optimization over the linear span and the convex hull of a set of atoms, respectively. In this paper, we consider the intermediate case of optimization over the convex cone, parametrized as the conic hull of a generic atom set, leading to the first principled definitions of non-negative MP algorithms for which we give explicit convergence rates and demonstrate excellent empirical performance.


Boosting Black Box Variational Inference

Neural Information Processing Systems

Approximating a probability density in a tractable manner is a central task in Bayesian statistics. Variational Inference (VI) is a popular technique that achieves tractability by choosing a relatively simple variational approximation. Borrowing ideas from the classic boosting framework, recent approaches attempt to boost VI by replacing the selection of a single density with an iteratively constructed mixture of densities. In order to guarantee convergence, previous works impose stringent assumptions that require significant effort for practitioners. Specifically, they require a custom implementation of the greedy step (called the LMO) for every probabilistic model with respect to an unnatural variational family of truncated distributions.