Gui, Weihua
Canonical Correlation Guided Deep Neural Network
Chen, Zhiwen, Mo, Siwen, Ke, Haobin, Ding, Steven X., Jiang, Zhaohui, Yang, Chunhua, Gui, Weihua
Learning representations of two views of data such that the resulting representations are highly linearly correlated is appealing in machine learning. In this paper, we present a canonical correlation guided learning framework, which allows to be realized by deep neural networks (CCDNN), to learn such a correlated representation. It is also a novel merging of multivariate analysis (MVA) and machine learning, which can be viewed as transforming MVA into end-to-end architectures with the aid of neural networks. Unlike the linear canonical correlation analysis (CCA), kernel CCA and deep CCA, in the proposed method, the optimization formulation is not restricted to maximize correlation, instead we make canonical correlation as a constraint, which preserves the correlated representation learning ability and focuses more on the engineering tasks endowed by optimization formulation, such as reconstruction, classification and prediction. Furthermore, to reduce the redundancy induced by correlation, a redundancy filter is designed. We illustrate the performance of CCDNN on various tasks. In experiments on MNIST dataset, the results show that CCDNN has better reconstruction performance in terms of mean squared error and mean absolute error than DCCA and DCCAE. Also, we present the application of the proposed network to industrial fault diagnosis and remaining useful life cases for the classification and prediction tasks accordingly. The proposed method demonstrates superior performance in both tasks when compared to existing methods. Extension of CCDNN to much more deeper with the aid of residual connection is also presented in appendix.
Spatial-temporal associations representation and application for process monitoring using graph convolution neural network
Ren, Hao, Liang, Xiaojun, Yang, Chunhua, Chen, Zhiwen, Gui, Weihua
Thank you very much for the attention and concern of colleagues and scholars in this work. With the comments and guidance of experts, editors, and reviewers, this work has been accepted for publishing in the journal "Process Safety and Environmental Protection". The theme of this paper relies on the Spatial-temporal associations of numerous variables in the same industrial processes, which refers to numerous variables obtained in dynamic industrial processes with Spatial-temporal correlation characteristics, i.e., these variables are not only highly correlated in time but also interrelated in space. To handle this problem, three key issues need to be well addressed: variable characteristics modeling and representation, graph network construction (temporal information), and graph characteristics perception. The first issue is implemented by assuming the data follows one improved Gaussian distribution, while the graph network can be defined by the monitoring variables and their edges which are calculated by their characteristics in time. Finally, these networks corresponding to process states at different times are fed into a graph convolutional neural network to implement graph classification to achieve process monitoring. A benchmark experiment (Tennessee Eastman chemical process) and one application study (cobalt purification from zinc solution) are employed to demonstrate the feasibility and applicability of this paper.
A Discrete State Transition Algorithm for Generalized Traveling Salesman Problem
Tang, Xiaolin, Yang, Chunhua, Zhou, Xiaojun, Gui, Weihua
Generalized traveling salesman problem (GTSP) is an extension of classical traveling salesman problem (TSP), which is a combinatorial optimization problem and an NP-hard problem. In this paper, an efficient discrete state transition algorithm (DSTA) for GTSP is proposed, where a new local search operator named \textit{K-circle}, directed by neighborhood information in space, has been introduced to DSTA to shrink search space and strengthen search ability. A novel robust update mechanism, restore in probability and risk in probability (Double R-Probability), is used in our work to escape from local minima. The proposed algorithm is tested on a set of GTSP instances. Compared with other heuristics, experimental results have demonstrated the effectiveness and strong adaptability of DSTA and also show that DSTA has better search ability than its competitors.