Goto

Collaborating Authors

 Guedj, Benjamin


How good is PAC-Bayes at explaining generalisation?

arXiv.org Machine Learning

The widespread use of modern neural networks for high-stakes applications requires safety guarantees on their performance on future data, which have not been observed during the training [Xu and Goodacre, 2018, Russell and Norvig, 2020]. A well-established approach to train and evaluate the performance of a predictor consists of the following steps. First, the available data are split in a train and a test datasets. The training data are used to construct the predictor, whose performance is then assessed on the test data (empirical test risk). Finally, concentration inequalities [Boucheron et al., 2013] are used to derive, from this finite-sample test, an upper bound on the model expected performance over the data distribution (population risk) [Langford, 2005].


Reprint: a randomized extrapolation based on principal components for data augmentation

arXiv.org Artificial Intelligence

Data scarcity and data imbalance have attracted a lot of attention in many fields. Data augmentation, explored as an effective approach to tackle them, can improve the robustness and efficiency of classification models by generating new samples. This paper presents REPRINT, a simple and effective hidden-space data augmentation method for imbalanced data classification. Given hidden-space representations of samples in each class, REPRINT extrapolates, in a randomized fashion, augmented examples for target class by using subspaces spanned by principal components to summarize distribution structure of both source and target class. Consequently, the examples generated would diversify the target while maintaining the original geometry of target distribution. Besides, this method involves a label refinement component which allows to synthesize new soft labels for augmented examples. Compared with different NLP data augmentation approaches under a range of data imbalanced scenarios on four text classification benchmark, REPRINT shows prominent improvements. Moreover, through comprehensive ablation studies, we show that label refinement is better than label-preserving for augmented examples, and that our method suggests stable and consistent improvements in terms of suitable choices of principal components. Moreover, REPRINT is appealing for its easy-to-use since it contains only one hyperparameter determining the dimension of subspace and requires low computational resource.


Learning via Surrogate PAC-Bayes

arXiv.org Machine Learning

PAC-Bayes learning is a comprehensive setting for (i) studying the generalisation ability of learning algorithms and (ii) deriving new learning algorithms by optimising a generalisation bound. However, optimising generalisation bounds might not always be viable for tractable or computational reasons, or both. For example, iteratively querying the empirical risk might prove computationally expensive. In response, we introduce a novel principled strategy for building an iterative learning algorithm via the optimisation of a sequence of surrogate training objectives, inherited from PAC-Bayes generalisation bounds. The key argument is to replace the empirical risk (seen as a function of hypotheses) in the generalisation bound by its projection onto a constructible low dimensional functional space: these projections can be queried much more efficiently than the initial risk. On top of providing that generic recipe for learning via surrogate PAC-Bayes bounds, we (i) contribute theoretical results establishing that iteratively optimising our surrogates implies the optimisation of the original generalisation bounds, (ii) instantiate this strategy to the framework of meta-learning, introducing a meta-objective offering a closed form expression for meta-gradient, (iii) illustrate our approach with numerical experiments inspired by an industrial biochemical problem.


AI for ERW Detection in Clearance Operations -- The State of Research

arXiv.org Artificial Intelligence

The clearance of explosive remnants of war (ERW) continues to be a predominantly manual and high-risk process that can benefit from advances in technology to improve its efficiency and effectiveness. In particular, research on artificial intelligence for ERW clearance has grown significantly in recent years. However, this research spans a wide range of fields, making it difficult to gain a comprehensive understanding of current trends and developments. Therefore, this article provides a literature review of academic research on AI for ERW detection for clearance operations. It finds that research can be grouped into two main streams, AI for ERW object detection and AI for ERW risk prediction, with the latter being much less studied than the former. From the analysis of the eligible literature, we develop three opportunities for future research, including a call for renewed efforts in the use of AI for ERW risk prediction, the combination of different AI systems and data sources, and novel approaches to improve ERW risk prediction performance, such as pattern-based prediction. Finally, we provide a perspective on the future of AI for ERW clearance. We emphasize the role of traditional machine learning for this task, the need to dynamically incorporate expert knowledge into the models, and the importance of effectively integrating AI systems with real-world operations.


Closed-form Filtering for Non-linear Systems

arXiv.org Artificial Intelligence

Sequential Bayesian Filtering aims to estimate the current state distribution of a Hidden Markov Model, given the past observations. The problem is well-known to be intractable for most application domains, except in notable cases such as the tabular setting or for linear dynamical systems with gaussian noise. In this work, we propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency. We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models. When the transition and observations are approximated by Gaussian PSD Models, we show that our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities. In particular, we identify regimes in which our proposed filter attains a TV $\epsilon$-error with memory and computational complexity of $O(\epsilon^{-1})$ and $O(\epsilon^{-3/2})$ respectively, including the offline learning step, in contrast to the $O(\epsilon^{-2})$ complexity of sampling methods such as particle filtering.


A PAC-Bayesian Link Between Generalisation and Flat Minima

arXiv.org Machine Learning

Modern machine learning usually involves predictors in the overparametrised setting (number of trained parameters greater than dataset size), and their training yield not only good performances on training data, but also good generalisation capacity. This phenomenon challenges many theoretical results, and remains an open problem. To reach a better understanding, we provide novel generalisation bounds involving gradient terms. To do so, we combine the PAC-Bayes toolbox with Poincar\'e and Log-Sobolev inequalities, avoiding an explicit dependency on dimension of the predictor space. Our results highlight the positive influence of \emph{flat minima} (being minima with a neighbourhood nearly minimising the learning problem as well) on generalisation performances, involving directly the benefits of the optimisation phase.


Tighter Generalisation Bounds via Interpolation

arXiv.org Artificial Intelligence

This paper contains a recipe for deriving new PAC-Bayes generalisation bounds based on the $(f, \Gamma)$-divergence, and, in addition, presents PAC-Bayes generalisation bounds where we interpolate between a series of probability divergences (including but not limited to KL, Wasserstein, and total variation), making the best out of many worlds depending on the posterior distributions properties. We explore the tightness of these bounds and connect them to earlier results from statistical learning, which are specific cases. We also instantiate our bounds as training objectives, yielding non-trivial guarantees and practical performances.


A note on regularised NTK dynamics with an application to PAC-Bayesian training

arXiv.org Machine Learning

We establish explicit dynamics for neural networks whose training objective has a regularising term that constrains the parameters to remain close to their initial value. This keeps the network in a lazy training regime, where the dynamics can be linearised around the initialisation. The standard neural tangent kernel (NTK) governs the evolution during the training in the infinite-width limit, although the regularisation yields an additional term appears in the differential equation describing the dynamics. This setting provides an appropriate framework to study the evolution of wide networks trained to optimise generalisation objectives such as PAC-Bayes bounds, and hence potentially contribute to a deeper theoretical understanding of such networks.


Learning via Wasserstein-Based High Probability Generalisation Bounds

arXiv.org Machine Learning

Minimising upper bounds on the population risk or the generalisation gap has been widely used in structural risk minimisation (SRM) -- this is in particular at the core of PAC-Bayesian learning. Despite its successes and unfailing surge of interest in recent years, a limitation of the PAC-Bayesian framework is that most bounds involve a Kullback-Leibler (KL) divergence term (or its variations), which might exhibit erratic behavior and fail to capture the underlying geometric structure of the learning problem -- hence restricting its use in practical applications. As a remedy, recent studies have attempted to replace the KL divergence in the PAC-Bayesian bounds with the Wasserstein distance. Even though these bounds alleviated the aforementioned issues to a certain extent, they either hold in expectation, are for bounded losses, or are nontrivial to minimize in an SRM framework. In this work, we contribute to this line of research and prove novel Wasserstein distance-based PAC-Bayesian generalisation bounds for both batch learning with independent and identically distributed (i.i.d.) data, and online learning with potentially non-i.i.d. data. Contrary to previous art, our bounds are stronger in the sense that (i) they hold with high probability, (ii) they apply to unbounded (potentially heavy-tailed) losses, and (iii) they lead to optimizable training objectives that can be used in SRM. As a result we derive novel Wasserstein-based PAC-Bayesian learning algorithms and we illustrate their empirical advantage on a variety of experiments.


Federated Learning with Nonvacuous Generalisation Bounds

arXiv.org Machine Learning

We introduce a novel strategy to train randomised predictors in federated learning, where each node of the network aims at preserving its privacy by releasing a local predictor but keeping secret its training dataset with respect to the other nodes. We then build a global randomised predictor which inherits the properties of the local private predictors in the sense of a PAC-Bayesian generalisation bound. We consider the synchronous case where all nodes share the same training objective (derived from a generalisation bound), and the asynchronous case where each node may have its own personalised training objective. We show through a series of numerical experiments that our approach achieves a comparable predictive performance to that of the batch approach where all datasets are shared across nodes. Moreover the predictors are supported by numerically nonvacuous generalisation bounds while preserving privacy for each node. We explicitly compute the increment on predictive performance and generalisation bounds between batch and federated settings, highlighting the price to pay to preserve privacy.